File size: 2,000 Bytes
fa49620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: allenai/led-large-16384
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: LED-Large-NSPCC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LED-Large-NSPCC

This model is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7268
- Rouge1: 0.5254
- Rouge2: 0.2338
- Rougel: 0.3002
- Rougelsum: 0.3002
- Gen Len: 299.4787

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 2.4641        | 0.9947 | 94   | 2.1400          | 0.4307 | 0.1505 | 0.226  | 0.226     | 353.6277 |
| 1.8933        | 2.0    | 189  | 1.8349          | 0.4851 | 0.1895 | 0.2638 | 0.2641    | 275.5745 |
| 1.3745        | 2.9947 | 283  | 1.6659          | 0.516  | 0.2274 | 0.2882 | 0.2887    | 299.5426 |
| 0.8719        | 3.9788 | 376  | 1.7268          | 0.5254 | 0.2338 | 0.3002 | 0.3002    | 299.4787 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1