File size: 2,180 Bytes
c6d22b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: LongT5-Base-NSPCC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LongT5-Base-NSPCC
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7756
- Rouge1: 0.5243
- Rouge2: 0.242
- Rougel: 0.3113
- Rougelsum: 0.3122
- Gen Len: 331.8511
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 4.0417 | 0.9947 | 94 | 0.8455 | 0.4707 | 0.1986 | 0.2704 | 0.2718 | 303.4468 |
| 1.0117 | 2.0 | 189 | 0.8058 | 0.5178 | 0.239 | 0.3066 | 0.3077 | 326.3085 |
| 0.886 | 2.9947 | 283 | 0.7798 | 0.5085 | 0.2272 | 0.298 | 0.2989 | 348.7979 |
| 0.805 | 4.0 | 378 | 0.7725 | 0.5194 | 0.2386 | 0.309 | 0.31 | 331.3191 |
| 0.7724 | 4.9947 | 472 | 0.7749 | 0.5224 | 0.2423 | 0.3133 | 0.3147 | 333.6489 |
| 0.7514 | 5.9683 | 564 | 0.7756 | 0.5243 | 0.242 | 0.3113 | 0.3122 | 331.8511 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|