File size: 8,425 Bytes
8d7f03b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from typing import Sequence, Optional, Union
import sys
# sys.path.append('/aifs4su/data/zheny/fairseq/vae_v2/codec_final')
import math
import random
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from modules.seanet import SEANetEncoder, SEANetDecoder
from quantization import ResidualVectorQuantizer#,VectorQuantize
from transformers import AutoModel
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import AutoFeatureExtractor, WhisperModel
# sys.path.append('/scratch/buildlam/codeclm/jiahaopan/codec_final/RepCodec')
from RepCodec.repcodec.modules.encoder import Encoder
from RepCodec.repcodec.modules.decoder import Decoder
# sys.path.append('/data/zheny/UniAudio/codec/descriptaudiocodecs')
#descript-audio-codec/dac/model
import descriptaudiocodec.dac.model.dac as dac2
# sys.path.append('/aifs4su/data/zheny/peiwensun/project/s3prl/s3prl/upstream/hubert/')
# from simple_expert import UpstreamExpert
def get_model_size(model):
# 计算总参数数
total_params = sum(p.numel() for p in model.parameters())
# 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
model_size_bytes = total_params # 每个参数4字节
# 转换为更易读的单位(例如,MB)
model_size_mb = model_size_bytes / (1024 ** 2)
return total_params, model_size_mb
class SoundStream(nn.Module):
""" SoundStream model or EnCodec model.
Args:
n_filters (int): n_filters (int): Base width for the model.
D (int): Intermediate representation dimension.
target_bandwidths (Sequence[int]): Target bandwidths in K-bits/second.
ratios (Sequence[int]): downsampling factors, whose multiplication is the hop size.
sample_rate (int): wave sampling rate.
bins (int): number of code words in a codebook.
normalize (bool): audio normalization.
"""
def __init__(
self,
n_filters: int = 32,
D: int = 128,
# target_bandwidths: Sequence[Union[int, float]] = [0.5, 1, 1.5, 2, 4, 6],
target_bandwidths: Sequence[Union[int, float]] = [1, 1.5, 2, 4, 6],
ratios: Sequence[int] = [8, 5, 4, 2], # downsampling by 320
sample_rate: int = 16000,
bins: int = 1024,
normalize: bool = False,
causal: bool = False,
):
super().__init__()
self.hop_length = np.prod(ratios)
# total nb of codebooks, e.g., 6Kb/s, sr=16000 and hop_length=320 => nq = 12
n_q = int(1000 * target_bandwidths[-1] // (math.ceil(sample_rate / self.hop_length) * 10))
self.frame_rate = math.ceil(sample_rate / np.prod(ratios)) # 50 Hz
self.bits_per_codebook = int(math.log2(bins)) # 1024 => 10
self.target_bandwidths = target_bandwidths
self.n_q = n_q
self.sample_rate = sample_rate
# Encoder model
# self.encoder = SEANetEncoder(n_filters=n_filters, dimension=D, ratios=ratios, causal=causal)
self.encoder = dac2.Encoder( 64,ratios,D)
# RVQ model
self.encoder_semantic = Encoder(input_channels=768,encode_channels=768)
self.decoder_semantic = Decoder(code_dim=768,output_channels=768,decode_channels=768)
# out_D=D+768
self.quantizer = ResidualVectorQuantizer(dimension=D+768, n_q=n_q, bins=bins)
# Decoder model
# self.decoder = SEANetDecoder(n_filters= n_filters, dimension=D, ratios=ratios, causal=causal)
self.decoder_2 = dac2.Decoder( D,1024,ratios,)
# )
# self.upstream = UpstreamExpert(
# ckpt = '/aifs4su/data/zheny/fairseq/outputs/2024-05-08/12-50-35/checkpoints2/checkpoint_8_225000_converted.pt',
# )#.to(self.args.device)
# self.upstream.model = self.upstream.model.to(self.device)
c=1
# self.upstream(wavs)
# self.processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
self.is_semantic= True
if self.is_semantic:
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/DiT_TTS/ckpts/yz_2")
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/fairseq/outputs/2024-05-11/13-27-56/hf15")
self.semantic_model = AutoModel.from_pretrained("./xcodec_mini_infer/semantic_ckpts/hf_1_325000")
self.semantic_model.eval()
# self.transform_linear = nn.Linear(1024, 768)
# processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
# self.semantic_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
self.fc_prior = nn.Linear(D+768, D+768 )
# self.fc_prior= nn.Linear( D, D )
self.fc_post1= nn.Linear( D+768, 768 )
self.fc_post2= nn.Linear( D+768, D)
def get_last_layer(self):
return self.decoder.layers[-1].weight
def calculate_rec_loss(self, rec, target):
target = target / target.norm(dim=-1, keepdim=True)
rec = rec / rec.norm(dim=-1, keepdim=True)
rec_loss = (1 - (target * rec).sum(-1)).mean()
# rec_loss = F.mse_loss(target, rec)
return rec_loss
@torch.no_grad()
def get_regress_target(self, x ):
x= x[:,0,:]
x = F.pad(x, (160, 160))
target = self.semantic_model(x, output_hidden_states=True) .hidden_states
target = torch.stack(target, dim=1)#.transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)
target = target.mean(1)
# target = target[9]
return target
def forward(self, x: torch.Tensor, bw: int):
e_semantic_input = self.get_regress_target_whisper(x).detach()
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
e_acoustic = self.encoder(x)
e= torch.cat([e_acoustic, e_semantic], dim=1)
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
quantized_semantic = self.fc_post1(quantized.transpose(1, 2)).transpose(1, 2)
quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)
o = self.decoder_2(quantized_acoustic)
o_semantic = self.decoder_semantic(quantized_semantic )
semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(),o_semantic)
return o, commit_loss, semantic_recon_loss,None
# return o, commit_loss, distill_loss.mean(),None
def encode(self, x: torch.Tensor, target_bw: Optional[int] = None) -> torch.Tensor:
# e = self.encoder(x)
# if target_bw is None:
# bw = self.target_bandwidths[-1]
# else:
bw = target_bw
# codes = self.quantizer.encode(e, self.frame_rate, bw)
# if e_acoustic.shape[2] != e_semantic.shape[2]:
# print(f"e_acoustic {e_acoustic.shape} e_semantic{e_semantic.shape}")
e_semantic_input = self.get_regress_target(x).detach()
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
e_acoustic = self.encoder(x)
if e_acoustic.shape[2] != e_semantic.shape[2]:
# e_acoustic = self.encoder(F.pad(x[:,0,:], (160, 160)).unsqueeze(0))
e_acoustic = self.encoder(torch.transpose(F.pad(x[:,0,:], (160, 160)).unsqueeze(0), 0, 1))
e= torch.cat([e_acoustic, e_semantic], dim=1)
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
return codes
def get_embed(self, codes: torch.Tensor) -> torch.Tensor:
return self.quantizer.decode(codes)
def decode(self, codes: torch.Tensor) -> torch.Tensor:
quantized = self.quantizer.decode(codes)
quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)
o = self.decoder_2(quantized_acoustic)
return o
# test
if __name__ == '__main__':
soundstream = SoundStream(n_filters=32, D=256)#.cuda(0)
# get_model_size(soundstream)
for i in range(10):
print(f"Iter {i}: ")
x = torch.rand(1, 1, 16000)#.cuda(0)
o, commit_loss, distill_loss,_= soundstream(x,soundstream.target_bandwidths[-1])
print('output', o.shape)
|