File size: 8,425 Bytes
8d7f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
 

from typing import Sequence, Optional, Union
import sys
# sys.path.append('/aifs4su/data/zheny/fairseq/vae_v2/codec_final')
import math
import random

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F

from modules.seanet import SEANetEncoder, SEANetDecoder
from quantization  import ResidualVectorQuantizer#,VectorQuantize
from transformers import  AutoModel
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import AutoFeatureExtractor, WhisperModel
# sys.path.append('/scratch/buildlam/codeclm/jiahaopan/codec_final/RepCodec')
from RepCodec.repcodec.modules.encoder import Encoder
from RepCodec.repcodec.modules.decoder import Decoder
# sys.path.append('/data/zheny/UniAudio/codec/descriptaudiocodecs')
#descript-audio-codec/dac/model
import descriptaudiocodec.dac.model.dac  as dac2
# sys.path.append('/aifs4su/data/zheny/peiwensun/project/s3prl/s3prl/upstream/hubert/')
# from simple_expert import UpstreamExpert

def get_model_size(model):
    # 计算总参数数
    total_params = sum(p.numel() for p in model.parameters())
    
    # 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
    model_size_bytes = total_params    # 每个参数4字节
    
    # 转换为更易读的单位(例如,MB)
    model_size_mb = model_size_bytes / (1024 ** 2)
    
    return total_params, model_size_mb


class SoundStream(nn.Module):
    """ SoundStream model or EnCodec model.
    
    Args:
        n_filters (int): n_filters (int): Base width for the model.
        D (int): Intermediate representation dimension.
        target_bandwidths (Sequence[int]): Target bandwidths in K-bits/second.
        ratios (Sequence[int]): downsampling factors, whose multiplication is the hop size.
        sample_rate (int): wave sampling rate.
        bins (int): number of code words in a codebook.
        normalize (bool): audio normalization.

    """
    def __init__(
        self,
        n_filters: int = 32,
        D: int = 128,
        # target_bandwidths: Sequence[Union[int, float]] = [0.5, 1, 1.5, 2, 4, 6],
        target_bandwidths: Sequence[Union[int, float]] = [1, 1.5, 2, 4, 6],
        ratios: Sequence[int] = [8, 5, 4, 2], #  downsampling by 320
        sample_rate: int = 16000,
        bins: int = 1024,
        normalize: bool = False,
        causal: bool = False,
    ):
        super().__init__()
        self.hop_length = np.prod(ratios)
        # total nb of codebooks, e.g., 6Kb/s, sr=16000 and hop_length=320 => nq = 12
        n_q = int(1000 * target_bandwidths[-1] // (math.ceil(sample_rate / self.hop_length) * 10))
        self.frame_rate = math.ceil(sample_rate / np.prod(ratios)) # 50 Hz
        self.bits_per_codebook = int(math.log2(bins)) # 1024 => 10
        self.target_bandwidths = target_bandwidths
        self.n_q = n_q
        self.sample_rate = sample_rate

        # Encoder model
        # self.encoder = SEANetEncoder(n_filters=n_filters, dimension=D, ratios=ratios, causal=causal)
        self.encoder = dac2.Encoder(            64,ratios,D)
        # RVQ model
        self.encoder_semantic = Encoder(input_channels=768,encode_channels=768)
        self.decoder_semantic = Decoder(code_dim=768,output_channels=768,decode_channels=768)
        # out_D=D+768
        self.quantizer = ResidualVectorQuantizer(dimension=D+768, n_q=n_q, bins=bins)
        # Decoder model
        
        # self.decoder = SEANetDecoder(n_filters= n_filters, dimension=D, ratios=ratios, causal=causal)
        self.decoder_2 = dac2.Decoder(            D,1024,ratios,)

        # )
        # self.upstream = UpstreamExpert(
        #     ckpt = '/aifs4su/data/zheny/fairseq/outputs/2024-05-08/12-50-35/checkpoints2/checkpoint_8_225000_converted.pt',
        # )#.to(self.args.device)
        # self.upstream.model = self.upstream.model.to(self.device)
        c=1
        # self.upstream(wavs) 
        # self.processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")

        self.is_semantic= True 
        if self.is_semantic:
            # self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/DiT_TTS/ckpts/yz_2")   
            # self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/fairseq/outputs/2024-05-11/13-27-56/hf15")
            self.semantic_model = AutoModel.from_pretrained("./xcodec_mini_infer/semantic_ckpts/hf_1_325000")
            self.semantic_model.eval()
            # self.transform_linear = nn.Linear(1024, 768)


 
        # processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
        # self.semantic_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
        self.fc_prior = nn.Linear(D+768, D+768 )
        # self.fc_prior= nn.Linear( D, D )
        self.fc_post1= nn.Linear( D+768, 768 )
        self.fc_post2= nn.Linear( D+768,  D)

    def get_last_layer(self):
        return self.decoder.layers[-1].weight
    
    def calculate_rec_loss(self, rec, target):  
 
        target = target / target.norm(dim=-1, keepdim=True)
        rec = rec / rec.norm(dim=-1, keepdim=True)
        rec_loss = (1 - (target * rec).sum(-1)).mean()
        # rec_loss = F.mse_loss(target, rec)


        return rec_loss

    @torch.no_grad()
    def get_regress_target(self, x ):
        x= x[:,0,:]
        x = F.pad(x, (160, 160))
        target = self.semantic_model(x, output_hidden_states=True) .hidden_states
        target = torch.stack(target, dim=1)#.transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)
        
        target = target.mean(1)   
        # target = target[9]
        return target

 
    def forward(self, x: torch.Tensor, bw: int):

        e_semantic_input = self.get_regress_target_whisper(x).detach()

        e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
        e_acoustic = self.encoder(x)
 
 
        e= torch.cat([e_acoustic, e_semantic], dim=1)

        e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)

 
        quantized, codes, bandwidth, commit_loss  = self.quantizer(e, self.frame_rate, bw)

        quantized_semantic = self.fc_post1(quantized.transpose(1, 2)).transpose(1, 2)
        quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)

        o = self.decoder_2(quantized_acoustic)
 
        o_semantic = self.decoder_semantic(quantized_semantic )
        semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(),o_semantic)

        return o, commit_loss, semantic_recon_loss,None
        # return o, commit_loss, distill_loss.mean(),None

    def encode(self, x: torch.Tensor, target_bw: Optional[int] = None) -> torch.Tensor:
        # e = self.encoder(x)
        # if target_bw is None:
        #     bw = self.target_bandwidths[-1]
        # else:
        bw = target_bw
        # codes = self.quantizer.encode(e, self.frame_rate, bw)

        
        # if e_acoustic.shape[2] != e_semantic.shape[2]:
        #     print(f"e_acoustic {e_acoustic.shape} e_semantic{e_semantic.shape}")

        e_semantic_input = self.get_regress_target(x).detach()

        e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
        e_acoustic = self.encoder(x)


        if e_acoustic.shape[2] != e_semantic.shape[2]:
            # e_acoustic = self.encoder(F.pad(x[:,0,:], (160, 160)).unsqueeze(0)) 
            e_acoustic = self.encoder(torch.transpose(F.pad(x[:,0,:], (160, 160)).unsqueeze(0), 0, 1))
 
        e= torch.cat([e_acoustic, e_semantic], dim=1)

        e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)

        quantized, codes, bandwidth, commit_loss  = self.quantizer(e, self.frame_rate, bw)
        return codes

    def get_embed(self, codes: torch.Tensor) -> torch.Tensor:
        return self.quantizer.decode(codes)

    def decode(self, codes: torch.Tensor) -> torch.Tensor:
        quantized = self.quantizer.decode(codes)
        quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)

        o = self.decoder_2(quantized_acoustic)
        return o

# test
if __name__ == '__main__':
    soundstream = SoundStream(n_filters=32, D=256)#.cuda(0)
    # get_model_size(soundstream)
    for i in range(10):
        print(f"Iter {i}: ")
        x = torch.rand(1, 1, 16000)#.cuda(0)
        o, commit_loss, distill_loss,_= soundstream(x,soundstream.target_bandwidths[-1])
        print('output', o.shape)