screevoai commited on
Commit
c60b224
1 Parent(s): ee39234

added README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: meta-llama/Meta-Llama-3-70B-Instruct
4
+ model-index:
5
+ - name: Llama3-70b-4bit
6
+ results:
7
+ - task:
8
+ name: Text Generation
9
+ type: text-generation
10
+ metrics:
11
+ - name: Wer
12
+ type: wer
13
+ value: 4.446809768789546
14
+ pipeline_tag: text-generation
15
+ ---
16
+
17
+
18
+ # Llama3-70b-4bit
19
+
20
+ This model is a quantized version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)
21
+
22
+
23
+ ### Libraries to Install
24
+
25
+ - pip install transformers torch
26
+
27
+ ### Authentication needed before running the script
28
+
29
+ Run the following command in the terminal/jupyter_notebook:
30
+
31
+ - Terminal: huggingface-cli login
32
+ - Jupyter_notebook:
33
+
34
+ ```python
35
+ >>> from huggingface_hub import notebook_login
36
+ >>> notebook_login()
37
+ ```
38
+
39
+ **NOTE:** Copy and Paste the token from your Huggingface Account Settings > Access Tokens > Create a new token / Copy the existing one.
40
+
41
+
42
+ ### Script
43
+
44
+ ```python
45
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
46
+ >>> import torch
47
+
48
+ >>> # Load model and processor
49
+ >>> model_id = "screevoai/llama3-70b-4bit"
50
+
51
+ >>> # Load tokenizer and model
52
+ >>> tokenizer = AutoTokenizer.from_pretrained(model_id)
53
+
54
+ >>> model = AutoModelForCausalLM.from_pretrained(
55
+ >>> model_id,
56
+ >>> torch_dtype=torch.bfloat16,
57
+ >>> device_map="cuda:0"
58
+ >>> )
59
+
60
+ >>> # message
61
+ >>> messages = [
62
+ >>> {"role": "system", "content": "You are a personal assistant chatbot, so respond accordingly"},
63
+ >>> {"role": "user", "content": "What is Machine Learning?"},
64
+ >>> ]
65
+
66
+ >>> input_ids = tokenizer.apply_chat_template(
67
+ >>> messages,
68
+ >>> add_generation_prompt=True,
69
+ >>> return_tensors="pt"
70
+ >>> ).to(model.device)
71
+
72
+ >>> terminators = [
73
+ >>> tokenizer.eos_token_id,
74
+ >>> tokenizer.convert_tokens_to_ids("<|eot_id|>")
75
+ >>> ]
76
+
77
+ >>> # Generate predictions using the model
78
+ >>> outputs = model.generate(
79
+ >>> input_ids,
80
+ >>> max_new_tokens=512,
81
+ >>> eos_token_id=terminators,
82
+ >>> do_sample=True,
83
+ >>> temperature=0.6,
84
+ >>> top_p=0.9,
85
+ >>> )
86
+ >>> response = outputs[0][input_ids.shape[-1]:]
87
+
88
+ >>> print(tokenizer.decode(response, skip_special_tokens=True))
89
+
90
+ ```