Upload InkDetectionPipeline
Browse files- README.md +199 -0
- config.json +28 -0
- ink_detection_pipeline.py +138 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "scrollprize/timesformer_GP_scroll1",
|
3 |
+
"architectures": [
|
4 |
+
"TimesformerScrollprizeModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "scrollprize/timesformer_GP_scroll1--timesformer_config.TimesformerScrollprizeConfig",
|
8 |
+
"AutoModel": "scrollprize/timesformer_GP_scroll1--timesformer_model.TimesformerScrollprizeModel"
|
9 |
+
},
|
10 |
+
"custom_pipelines": {
|
11 |
+
"ink-detection": {
|
12 |
+
"impl": "ink_detection_pipeline.InkDetectionPipeline",
|
13 |
+
"pt": [
|
14 |
+
"AutoModel"
|
15 |
+
],
|
16 |
+
"tf": []
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"depth": 8,
|
20 |
+
"dim": 512,
|
21 |
+
"n_heads": 6,
|
22 |
+
"num_classes": 16,
|
23 |
+
"num_frames": 26,
|
24 |
+
"patch_size": 16,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.46.3",
|
27 |
+
"window_size": 64
|
28 |
+
}
|
ink_detection_pipeline.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from transformers import Pipeline,AutoModel
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class InkDetectionPipeline(Pipeline):
|
10 |
+
"""
|
11 |
+
A custom pipeline that:
|
12 |
+
1. Takes in a 3D image: shape (m, n, d).
|
13 |
+
2. Cuts it into (64, 64, d) tiles with a given stride.
|
14 |
+
3. Runs the model inference on each tile (model is 3D-to-2D).
|
15 |
+
4. Reconstructs the predictions into a full-size output.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, model, device='cuda', tile_size=64, stride=32, scale_factor=16,batch_size=32,**kwargs):
|
19 |
+
super().__init__(model=model, tokenizer=None, device=0 if device=='cuda' else -1)
|
20 |
+
self.model = model.to(device)
|
21 |
+
self.device = device
|
22 |
+
self.tile_size = tile_size
|
23 |
+
self.stride = stride
|
24 |
+
self.scale_factor = scale_factor
|
25 |
+
self.batch_size=batch_size
|
26 |
+
def preprocess(self, inputs):
|
27 |
+
"""
|
28 |
+
inputs: np.ndarray of shape (m, n, d)
|
29 |
+
This function cuts the input volume into tiles of shape (tile_size, tile_size, d)
|
30 |
+
with a given stride.
|
31 |
+
Returns:
|
32 |
+
tiles: list of np arrays each (tile_size, tile_size, d)
|
33 |
+
coords: list of (x1, y1, x2, y2) coords
|
34 |
+
"""
|
35 |
+
volume = inputs
|
36 |
+
m, n, d = volume.shape
|
37 |
+
tiles = []
|
38 |
+
coords = []
|
39 |
+
# Extract patches with overlap
|
40 |
+
for y in range(0, m - self.tile_size + 1, self.stride):
|
41 |
+
for x in range(0, n - self.tile_size + 1, self.stride):
|
42 |
+
y1, y2 = y, y + self.tile_size
|
43 |
+
x1, x2 = x, x + self.tile_size
|
44 |
+
patch = volume[y1:y2, x1:x2] # shape (64,64,d)
|
45 |
+
tiles.append(patch.transpose(2,0,1))
|
46 |
+
coords.append((x1, y1, x2, y2))
|
47 |
+
return np.array(tiles,dtype=np.float16), coords, (m, n)
|
48 |
+
def _forward(self, model_inputs):
|
49 |
+
"""
|
50 |
+
model_inputs: a list of patches (B, tile_size, tile_size, d)
|
51 |
+
The model expects input: (B, C=1, H=tile_size, W=tile_size)
|
52 |
+
and returns (B, 1, H=tile_size, W=tile_size).
|
53 |
+
|
54 |
+
We'll add batching using a for loop. We assume `self.batch_size` is defined.
|
55 |
+
"""
|
56 |
+
|
57 |
+
patches = model_inputs
|
58 |
+
B = len(patches)
|
59 |
+
all_preds = []
|
60 |
+
# Process in batches to save memory
|
61 |
+
for start_idx in tqdm(range(0, B, self.batch_size)):
|
62 |
+
end_idx = start_idx + self.batch_size
|
63 |
+
sub_batch = torch.from_numpy(patches[start_idx:end_idx].astype(np.float32)) # shape: (subB, d, tile_size, tile_size)
|
64 |
+
|
65 |
+
# Add channel dimension: (subB, 1, tile_size, tile_size)
|
66 |
+
sub_batch = sub_batch.unsqueeze(1)
|
67 |
+
|
68 |
+
with torch.no_grad(), torch.autocast(self.device if self.device == 'cuda' else 'cpu'):
|
69 |
+
sub_y_preds = self.model(sub_batch.to(self.device)) # (subB, 1, tile_size, tile_size)
|
70 |
+
|
71 |
+
# Apply sigmoid
|
72 |
+
sub_y_preds = torch.sigmoid(sub_y_preds)
|
73 |
+
|
74 |
+
# Move to CPU and numpy
|
75 |
+
sub_y_preds = sub_y_preds.detach().cpu().numpy()
|
76 |
+
# shape (subB, 1, tile_size, tile_size)
|
77 |
+
|
78 |
+
all_preds.append(sub_y_preds)
|
79 |
+
|
80 |
+
# Concatenate along the batch dimension
|
81 |
+
y_preds = np.concatenate(all_preds, axis=0) # (B, 1, tile_size, tile_size)
|
82 |
+
|
83 |
+
return y_preds
|
84 |
+
|
85 |
+
def postprocess(self, model_outputs, coords, full_shape):
|
86 |
+
"""
|
87 |
+
model_outputs: np.ndarray of shape (B, 1, tile_size, tile_size)
|
88 |
+
coords: list of (x1, y1, x2, y2) for each tile
|
89 |
+
full_shape: (m,n)
|
90 |
+
|
91 |
+
We need to:
|
92 |
+
- Place each tile prediction into a full (m,n) array
|
93 |
+
- Use the kernel to weight and sum predictions
|
94 |
+
- Divide by count
|
95 |
+
- Optionally upsample by scale_factor if required
|
96 |
+
"""
|
97 |
+
m, n = full_shape
|
98 |
+
# We will create mask_pred and mask_count to accumulate predictions
|
99 |
+
mask_pred = np.zeros((m, n), dtype=np.float32)
|
100 |
+
mask_count = np.zeros((m, n), dtype=np.float32)
|
101 |
+
B = model_outputs.shape[0]
|
102 |
+
# Interpolate (upsample) each prediction if needed
|
103 |
+
# Using PyTorch interpolate:
|
104 |
+
preds_tensor = torch.from_numpy(model_outputs.astype(np.float32)) # (B,1,64,64)
|
105 |
+
if self.scale_factor != 1:
|
106 |
+
preds_tensor = F.interpolate(
|
107 |
+
preds_tensor, scale_factor=self.scale_factor, mode='bilinear', align_corners=False
|
108 |
+
)
|
109 |
+
preds_tensor = preds_tensor.squeeze(1).numpy() # (B, H_out, W_out)
|
110 |
+
|
111 |
+
out_tile_size = self.tile_size
|
112 |
+
|
113 |
+
for i, (x1, y1, x2, y2) in enumerate(coords):
|
114 |
+
# Adjust coords due to upsampling
|
115 |
+
y2_up = y1 + out_tile_size
|
116 |
+
x2_up = x1 + out_tile_size
|
117 |
+
|
118 |
+
mask_pred[y1:y2_up, x1:x2_up] += preds_tensor[i]
|
119 |
+
mask_count[y1:y2_up, x1:x2_up] += np.ones((out_tile_size, out_tile_size), dtype=np.float32)
|
120 |
+
|
121 |
+
mask_pred = np.divide(mask_pred, mask_count, out=np.zeros_like(mask_pred), where=mask_count!=0)
|
122 |
+
|
123 |
+
return mask_pred
|
124 |
+
def _sanitize_parameters(self,**kwargs):
|
125 |
+
return {},{},{}
|
126 |
+
def __call__(self, image: np.ndarray):
|
127 |
+
"""
|
128 |
+
Args:
|
129 |
+
image: np.ndarray of shape (m, n, d) input volume.
|
130 |
+
Returns:
|
131 |
+
mask_pred: np.ndarray of shape (m_out, n_out) predicted mask.
|
132 |
+
"""
|
133 |
+
tiles, coords, full_shape = self.preprocess(image)
|
134 |
+
# Process in batches if too large (optional). Here we do a single batch inference for simplicity.
|
135 |
+
# If large images, consider chunking tiles into smaller batches.
|
136 |
+
outputs = self._forward(tiles)
|
137 |
+
mask_pred = self.postprocess(outputs, coords, full_shape)
|
138 |
+
return mask_pred
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:490a98f9491e1180274ed3a0c0a9c611d73a0109c0e0c0fbba1097562a972488
|
3 |
+
size 151853128
|