YoussefMoNader commited on
Commit
6fec424
·
verified ·
1 Parent(s): 1f9a5c7

Upload InkDetectionPipeline

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +28 -0
  3. ink_detection_pipeline.py +138 -0
  4. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "scrollprize/timesformer_GP_scroll1",
3
+ "architectures": [
4
+ "TimesformerScrollprizeModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "scrollprize/timesformer_GP_scroll1--timesformer_config.TimesformerScrollprizeConfig",
8
+ "AutoModel": "scrollprize/timesformer_GP_scroll1--timesformer_model.TimesformerScrollprizeModel"
9
+ },
10
+ "custom_pipelines": {
11
+ "ink-detection": {
12
+ "impl": "ink_detection_pipeline.InkDetectionPipeline",
13
+ "pt": [
14
+ "AutoModel"
15
+ ],
16
+ "tf": []
17
+ }
18
+ },
19
+ "depth": 8,
20
+ "dim": 512,
21
+ "n_heads": 6,
22
+ "num_classes": 16,
23
+ "num_frames": 26,
24
+ "patch_size": 16,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.46.3",
27
+ "window_size": 64
28
+ }
ink_detection_pipeline.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from transformers import Pipeline,AutoModel
5
+ from tqdm import tqdm
6
+
7
+
8
+
9
+ class InkDetectionPipeline(Pipeline):
10
+ """
11
+ A custom pipeline that:
12
+ 1. Takes in a 3D image: shape (m, n, d).
13
+ 2. Cuts it into (64, 64, d) tiles with a given stride.
14
+ 3. Runs the model inference on each tile (model is 3D-to-2D).
15
+ 4. Reconstructs the predictions into a full-size output.
16
+ """
17
+
18
+ def __init__(self, model, device='cuda', tile_size=64, stride=32, scale_factor=16,batch_size=32,**kwargs):
19
+ super().__init__(model=model, tokenizer=None, device=0 if device=='cuda' else -1)
20
+ self.model = model.to(device)
21
+ self.device = device
22
+ self.tile_size = tile_size
23
+ self.stride = stride
24
+ self.scale_factor = scale_factor
25
+ self.batch_size=batch_size
26
+ def preprocess(self, inputs):
27
+ """
28
+ inputs: np.ndarray of shape (m, n, d)
29
+ This function cuts the input volume into tiles of shape (tile_size, tile_size, d)
30
+ with a given stride.
31
+ Returns:
32
+ tiles: list of np arrays each (tile_size, tile_size, d)
33
+ coords: list of (x1, y1, x2, y2) coords
34
+ """
35
+ volume = inputs
36
+ m, n, d = volume.shape
37
+ tiles = []
38
+ coords = []
39
+ # Extract patches with overlap
40
+ for y in range(0, m - self.tile_size + 1, self.stride):
41
+ for x in range(0, n - self.tile_size + 1, self.stride):
42
+ y1, y2 = y, y + self.tile_size
43
+ x1, x2 = x, x + self.tile_size
44
+ patch = volume[y1:y2, x1:x2] # shape (64,64,d)
45
+ tiles.append(patch.transpose(2,0,1))
46
+ coords.append((x1, y1, x2, y2))
47
+ return np.array(tiles,dtype=np.float16), coords, (m, n)
48
+ def _forward(self, model_inputs):
49
+ """
50
+ model_inputs: a list of patches (B, tile_size, tile_size, d)
51
+ The model expects input: (B, C=1, H=tile_size, W=tile_size)
52
+ and returns (B, 1, H=tile_size, W=tile_size).
53
+
54
+ We'll add batching using a for loop. We assume `self.batch_size` is defined.
55
+ """
56
+
57
+ patches = model_inputs
58
+ B = len(patches)
59
+ all_preds = []
60
+ # Process in batches to save memory
61
+ for start_idx in tqdm(range(0, B, self.batch_size)):
62
+ end_idx = start_idx + self.batch_size
63
+ sub_batch = torch.from_numpy(patches[start_idx:end_idx].astype(np.float32)) # shape: (subB, d, tile_size, tile_size)
64
+
65
+ # Add channel dimension: (subB, 1, tile_size, tile_size)
66
+ sub_batch = sub_batch.unsqueeze(1)
67
+
68
+ with torch.no_grad(), torch.autocast(self.device if self.device == 'cuda' else 'cpu'):
69
+ sub_y_preds = self.model(sub_batch.to(self.device)) # (subB, 1, tile_size, tile_size)
70
+
71
+ # Apply sigmoid
72
+ sub_y_preds = torch.sigmoid(sub_y_preds)
73
+
74
+ # Move to CPU and numpy
75
+ sub_y_preds = sub_y_preds.detach().cpu().numpy()
76
+ # shape (subB, 1, tile_size, tile_size)
77
+
78
+ all_preds.append(sub_y_preds)
79
+
80
+ # Concatenate along the batch dimension
81
+ y_preds = np.concatenate(all_preds, axis=0) # (B, 1, tile_size, tile_size)
82
+
83
+ return y_preds
84
+
85
+ def postprocess(self, model_outputs, coords, full_shape):
86
+ """
87
+ model_outputs: np.ndarray of shape (B, 1, tile_size, tile_size)
88
+ coords: list of (x1, y1, x2, y2) for each tile
89
+ full_shape: (m,n)
90
+
91
+ We need to:
92
+ - Place each tile prediction into a full (m,n) array
93
+ - Use the kernel to weight and sum predictions
94
+ - Divide by count
95
+ - Optionally upsample by scale_factor if required
96
+ """
97
+ m, n = full_shape
98
+ # We will create mask_pred and mask_count to accumulate predictions
99
+ mask_pred = np.zeros((m, n), dtype=np.float32)
100
+ mask_count = np.zeros((m, n), dtype=np.float32)
101
+ B = model_outputs.shape[0]
102
+ # Interpolate (upsample) each prediction if needed
103
+ # Using PyTorch interpolate:
104
+ preds_tensor = torch.from_numpy(model_outputs.astype(np.float32)) # (B,1,64,64)
105
+ if self.scale_factor != 1:
106
+ preds_tensor = F.interpolate(
107
+ preds_tensor, scale_factor=self.scale_factor, mode='bilinear', align_corners=False
108
+ )
109
+ preds_tensor = preds_tensor.squeeze(1).numpy() # (B, H_out, W_out)
110
+
111
+ out_tile_size = self.tile_size
112
+
113
+ for i, (x1, y1, x2, y2) in enumerate(coords):
114
+ # Adjust coords due to upsampling
115
+ y2_up = y1 + out_tile_size
116
+ x2_up = x1 + out_tile_size
117
+
118
+ mask_pred[y1:y2_up, x1:x2_up] += preds_tensor[i]
119
+ mask_count[y1:y2_up, x1:x2_up] += np.ones((out_tile_size, out_tile_size), dtype=np.float32)
120
+
121
+ mask_pred = np.divide(mask_pred, mask_count, out=np.zeros_like(mask_pred), where=mask_count!=0)
122
+
123
+ return mask_pred
124
+ def _sanitize_parameters(self,**kwargs):
125
+ return {},{},{}
126
+ def __call__(self, image: np.ndarray):
127
+ """
128
+ Args:
129
+ image: np.ndarray of shape (m, n, d) input volume.
130
+ Returns:
131
+ mask_pred: np.ndarray of shape (m_out, n_out) predicted mask.
132
+ """
133
+ tiles, coords, full_shape = self.preprocess(image)
134
+ # Process in batches if too large (optional). Here we do a single batch inference for simplicity.
135
+ # If large images, consider chunking tiles into smaller batches.
136
+ outputs = self._forward(tiles)
137
+ mask_pred = self.postprocess(outputs, coords, full_shape)
138
+ return mask_pred
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:490a98f9491e1180274ed3a0c0a9c611d73a0109c0e0c0fbba1097562a972488
3
+ size 151853128