Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.36 +/- 0.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:774d8eb366b35c91f29fca153e3c82d4b5b570ca5a63fc5de2228c4a287e35d4
|
3 |
+
size 108025
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f66cdb89b40>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f66cdb87040>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674761981507192188,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlkZvmaFub/Ew5m/IfLHPtZvhj9ZiWM/M3ETP/YAFj+PFwG+Qp5iP02ByD+M+ZO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]]",
|
60 |
+
"desired_goal": "[[-0.14975378 -1.4493835 -1.2012868 ]\n [ 0.39051917 1.050288 0.8888145 ]\n [ 0.57594603 0.58595216 -0.12606643]\n [ 0.8852273 1.566446 -1.1560531 ]]",
|
61 |
+
"observation": "[[0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa9gOPlsrmb3j/+c9j1SIvQ959r24L7o9CzCqvWspfL0R6yg9Fh6APCaprb3x0nE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.13949744 -0.07478973 0.11328103]\n [-0.06656753 -0.12034809 0.09091133]\n [-0.08309945 -0.06156294 0.0412398 ]\n [ 0.01563935 -0.08479528 0.23615624]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9BYP7znw/b+UhpRSlIwBbJRLMowBdJRHQJhhS6shgVp1fZQoaAZoCWgPQwgYey++aM/7v5SGlFKUaBVLMmgWR0CYYPshxHXmdX2UKGgGaAloD0MIbEPFOH9T+r+UhpRSlGgVSzJoFkdAmGCqa5PM0XV9lChoBmgJaA9DCMxdS8gH3QXAlIaUUpRoFUsyaBZHQJhgWrilzlt1fZQoaAZoCWgPQwgniLoPQEoGwJSGlFKUaBVLMmgWR0CYYourp7kXdX2UKGgGaAloD0MIwsO0b+4v9r+UhpRSlGgVSzJoFkdAmGI690zTF3V9lChoBmgJaA9DCNTvwtZspQnAlIaUUpRoFUsyaBZHQJhh6j3225R1fZQoaAZoCWgPQwjgK7r1ml4CwJSGlFKUaBVLMmgWR0CYYZqsEJSjdX2UKGgGaAloD0MISnoYWp18CsCUhpRSlGgVSzJoFkdAmGO6FAVwgnV9lChoBmgJaA9DCN+Hg4QoPw3AlIaUUpRoFUsyaBZHQJhjaVObiId1fZQoaAZoCWgPQwi6ap4j8p38v5SGlFKUaBVLMmgWR0CYYxhwl0HRdX2UKGgGaAloD0MICOkpcoj4AsCUhpRSlGgVSzJoFkdAmGLIre67NHV9lChoBmgJaA9DCFsmw/F8Bvi/lIaUUpRoFUsyaBZHQJhk74REnb91fZQoaAZoCWgPQwjFkJxM3MoJwJSGlFKUaBVLMmgWR0CYZJ8hcJMQdX2UKGgGaAloD0MIEaYol8Yv/7+UhpRSlGgVSzJoFkdAmGROEIw/PnV9lChoBmgJaA9DCKZkOQmlLw3AlIaUUpRoFUsyaBZHQJhj/lhgE2Z1fZQoaAZoCWgPQwgceouH97wAwJSGlFKUaBVLMmgWR0CYZiNIsiB5dX2UKGgGaAloD0MI3UJXIlC9/r+UhpRSlGgVSzJoFkdAmGXSuhbno3V9lChoBmgJaA9DCLDKhcq/lgTAlIaUUpRoFUsyaBZHQJhlgaDPGAF1fZQoaAZoCWgPQwh6GjBI+lQLwJSGlFKUaBVLMmgWR0CYZTGyon8bdX2UKGgGaAloD0MILpCg+DGGA8CUhpRSlGgVSzJoFkdAmGdmeYlY2nV9lChoBmgJaA9DCO8AT1q4rAfAlIaUUpRoFUsyaBZHQJhnFg8bJfZ1fZQoaAZoCWgPQwgoDqDf908CwJSGlFKUaBVLMmgWR0CYZsVH4GlidX2UKGgGaAloD0MIi269pgdF9r+UhpRSlGgVSzJoFkdAmGZ1iay8jHV9lChoBmgJaA9DCMnMBS6Ptf+/lIaUUpRoFUsyaBZHQJhop7zCk451fZQoaAZoCWgPQwgJbM7BM+H8v5SGlFKUaBVLMmgWR0CYaFdHlOoHdX2UKGgGaAloD0MIlxsMdVjh8b+UhpRSlGgVSzJoFkdAmGgGUr08NnV9lChoBmgJaA9DCML8FTJXBg3AlIaUUpRoFUsyaBZHQJhntmTTvy91fZQoaAZoCWgPQwjZsnxdhv8FwJSGlFKUaBVLMmgWR0CYaeRlpXZHdX2UKGgGaAloD0MIIXTQJRw6DsCUhpRSlGgVSzJoFkdAmGmT7uUliXV9lChoBmgJaA9DCI3uIHamkPu/lIaUUpRoFUsyaBZHQJhpQw5/9YR1fZQoaAZoCWgPQwhq2zAKgkf+v5SGlFKUaBVLMmgWR0CYaPM495hSdX2UKGgGaAloD0MI/89hvrxAAsCUhpRSlGgVSzJoFkdAmGsez2OAAnV9lChoBmgJaA9DCDav6qwWmPi/lIaUUpRoFUsyaBZHQJhqzhJiAlR1fZQoaAZoCWgPQwi4Pqw3agX5v5SGlFKUaBVLMmgWR0CYan08vEjxdX2UKGgGaAloD0MIOJ7PgHqzBsCUhpRSlGgVSzJoFkdAmGotTxXnyXV9lChoBmgJaA9DCHkj88gfDAvAlIaUUpRoFUsyaBZHQJhsWFev6j51fZQoaAZoCWgPQwgeNSbEXBL6v5SGlFKUaBVLMmgWR0CYbAeGfwqidX2UKGgGaAloD0MIRSqMLQR5DMCUhpRSlGgVSzJoFkdAmGu2XokiU3V9lChoBmgJaA9DCOGWj6SkhwjAlIaUUpRoFUsyaBZHQJhrZplBhQZ1fZQoaAZoCWgPQwg+0AoMWf0IwJSGlFKUaBVLMmgWR0CYbX6f8MuwdX2UKGgGaAloD0MIrDsW26TiAcCUhpRSlGgVSzJoFkdAmG0t3wCr93V9lChoBmgJaA9DCK33G+24IQLAlIaUUpRoFUsyaBZHQJhs3Kifxtp1fZQoaAZoCWgPQwi6+UZ0z/r4v5SGlFKUaBVLMmgWR0CYbI1IiC8OdX2UKGgGaAloD0MIQndJnBXR/L+UhpRSlGgVSzJoFkdAmG7CiZfD13V9lChoBmgJaA9DCKyrArUYXAPAlIaUUpRoFUsyaBZHQJhucf3evZB1fZQoaAZoCWgPQwgktVAyOTUIwJSGlFKUaBVLMmgWR0CYbiHwgDA8dX2UKGgGaAloD0MIVWthFtrZD8CUhpRSlGgVSzJoFkdAmG3SZSeiBXV9lChoBmgJaA9DCMvydRn+k/q/lIaUUpRoFUsyaBZHQJhv7p7kXDZ1fZQoaAZoCWgPQwgAH7x2aUP+v5SGlFKUaBVLMmgWR0CYb53bmEGrdX2UKGgGaAloD0MIj/rrFRa8CsCUhpRSlGgVSzJoFkdAmG9NKRMewXV9lChoBmgJaA9DCDroEg69Rf2/lIaUUpRoFUsyaBZHQJhu/Tw2ETR1fZQoaAZoCWgPQwjfNehLb18DwJSGlFKUaBVLMmgWR0CYcRFbmlqKdX2UKGgGaAloD0MIvhWJCWr4+r+UhpRSlGgVSzJoFkdAmHDAg1WKdnV9lChoBmgJaA9DCMAEbt3Nk/m/lIaUUpRoFUsyaBZHQJhwb3g1m8N1fZQoaAZoCWgPQwhMio9PyG4AwJSGlFKUaBVLMmgWR0CYcB+WnjyXdX2UKGgGaAloD0MIueLiqNwkBcCUhpRSlGgVSzJoFkdAmHI2wiaAnXV9lChoBmgJaA9DCOgzoN6MShDAlIaUUpRoFUsyaBZHQJhx5iCrcTJ1fZQoaAZoCWgPQwgX2GMipTkAwJSGlFKUaBVLMmgWR0CYcZU1hsqKdX2UKGgGaAloD0MIon4XtmYr/r+UhpRSlGgVSzJoFkdAmHFFRDTjN3V9lChoBmgJaA9DCDmYTYBh+fq/lIaUUpRoFUsyaBZHQJhzdeBxxT91fZQoaAZoCWgPQwiULv1LUtkBwJSGlFKUaBVLMmgWR0CYcyVJcxCZdX2UKGgGaAloD0MIldi1vd3S/L+UhpRSlGgVSzJoFkdAmHLUUTL4e3V9lChoBmgJaA9DCGHfTiLCnwPAlIaUUpRoFUsyaBZHQJhyhFpfx+d1fZQoaAZoCWgPQwgke4SaIZUEwJSGlFKUaBVLMmgWR0CYdKONo8ISdX2UKGgGaAloD0MImFEst7RaAsCUhpRSlGgVSzJoFkdAmHRTCpFTenV9lChoBmgJaA9DCH/1uG+1DgrAlIaUUpRoFUsyaBZHQJh0AefZmI11fZQoaAZoCWgPQwjgLZCg+LEMwJSGlFKUaBVLMmgWR0CYc7Hmig01dX2UKGgGaAloD0MII0p7gy9sAsCUhpRSlGgVSzJoFkdAmHW7ONYKY3V9lChoBmgJaA9DCDblCu9ykf+/lIaUUpRoFUsyaBZHQJh1akRBeHB1fZQoaAZoCWgPQwigNqrTgawFwJSGlFKUaBVLMmgWR0CYdRlSS/0vdX2UKGgGaAloD0MIzjXM0HjCA8CUhpRSlGgVSzJoFkdAmHTJVbRne3V9lChoBmgJaA9DCHIZNzXQPPy/lIaUUpRoFUsyaBZHQJh20xQBPsR1fZQoaAZoCWgPQwixUkFF1a8FwJSGlFKUaBVLMmgWR0CYdoIeYD1XdX2UKGgGaAloD0MIaqSl8nakAMCUhpRSlGgVSzJoFkdAmHYw/LTx5XV9lChoBmgJaA9DCCY5YFeTJwXAlIaUUpRoFUsyaBZHQJh14WCVbA11fZQoaAZoCWgPQwitiQW+onsPwJSGlFKUaBVLMmgWR0CYd+2+PBBSdX2UKGgGaAloD0MIk6tY/KawBMCUhpRSlGgVSzJoFkdAmHec6aLGaXV9lChoBmgJaA9DCGyvBb03Bv+/lIaUUpRoFUsyaBZHQJh3S801qFh1fZQoaAZoCWgPQwgK8rOR68YLwJSGlFKUaBVLMmgWR0CYdvvb48EFdX2UKGgGaAloD0MI6zu/KEF/A8CUhpRSlGgVSzJoFkdAmHkPStvGZXV9lChoBmgJaA9DCN9sc2N6gv+/lIaUUpRoFUsyaBZHQJh4voePq9p1fZQoaAZoCWgPQwhmwcQfRT0HwJSGlFKUaBVLMmgWR0CYeG1TBInSdX2UKGgGaAloD0MIy54ENufgCMCUhpRSlGgVSzJoFkdAmHgdedCmdnV9lChoBmgJaA9DCPYpx2RxHwPAlIaUUpRoFUsyaBZHQJh6KO1fE4x1fZQoaAZoCWgPQwh/SwD+KbUDwJSGlFKUaBVLMmgWR0CYedf/3nIRdX2UKGgGaAloD0MI4JwRpb2BAcCUhpRSlGgVSzJoFkdAmHmGzWwu/XV9lChoBmgJaA9DCMGqevmdJgHAlIaUUpRoFUsyaBZHQJh5Nu2qkuZ1fZQoaAZoCWgPQwiDbFm+LsMHwJSGlFKUaBVLMmgWR0CYe0bG3nZCdX2UKGgGaAloD0MImu/gJw5AC8CUhpRSlGgVSzJoFkdAmHr11Oj7AXV9lChoBmgJaA9DCNGVCFT/YAzAlIaUUpRoFUsyaBZHQJh6pKSPluF1fZQoaAZoCWgPQwgkDtlAuhgKwJSGlFKUaBVLMmgWR0CYelSxZ+x4dX2UKGgGaAloD0MIizidZKurBcCUhpRSlGgVSzJoFkdAmHxgdfb9InV9lChoBmgJaA9DCAgGED6UyAXAlIaUUpRoFUsyaBZHQJh8D4N7SiN1fZQoaAZoCWgPQwhCP1OvW8QBwJSGlFKUaBVLMmgWR0CYe75PuXu3dX2UKGgGaAloD0MI54pSQrDKA8CUhpRSlGgVSzJoFkdAmHtujdpItnV9lChoBmgJaA9DCKq53GCoQwDAlIaUUpRoFUsyaBZHQJh9cq9XcQB1fZQoaAZoCWgPQwgAHlGhujn/v5SGlFKUaBVLMmgWR0CYfSHmA9V4dX2UKGgGaAloD0MIXp8561NOAMCUhpRSlGgVSzJoFkdAmHzQ0CRwInV9lChoBmgJaA9DCEUQ5+EEJgrAlIaUUpRoFUsyaBZHQJh8gMy8BdV1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7a9634264c31c68b0d6fd56909db218dd481f60eb7f9b930d67df3807cfde80
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2156130e83866b04e69c4d71a14bc83748c3bbe1f5bd0157b3235ba3089e29a6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.12.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f66cdb89b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66cdb87040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674761981507192188, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/jVvfPpn0ejxyOxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlkZvmaFub/Ew5m/IfLHPtZvhj9ZiWM/M3ETP/YAFj+PFwG+Qp5iP02ByD+M+ZO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyNW98+mfR6PHI7GD9WNNM7yh8AO+xTITyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]\n [0.43624535 0.01531711 0.59465706]]", "desired_goal": "[[-0.14975378 -1.4493835 -1.2012868 ]\n [ 0.39051917 1.050288 0.8888145 ]\n [ 0.57594603 0.58595216 -0.12606643]\n [ 0.8852273 1.566446 -1.1560531 ]]", "observation": "[[0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]\n [0.43624535 0.01531711 0.59465706 0.00644545 0.00195502 0.00984667]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa9gOPlsrmb3j/+c9j1SIvQ959r24L7o9CzCqvWspfL0R6yg9Fh6APCaprb3x0nE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13949744 -0.07478973 0.11328103]\n [-0.06656753 -0.12034809 0.09091133]\n [-0.08309945 -0.06156294 0.0412398 ]\n [ 0.01563935 -0.08479528 0.23615624]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9BYP7znw/b+UhpRSlIwBbJRLMowBdJRHQJhhS6shgVp1fZQoaAZoCWgPQwgYey++aM/7v5SGlFKUaBVLMmgWR0CYYPshxHXmdX2UKGgGaAloD0MIbEPFOH9T+r+UhpRSlGgVSzJoFkdAmGCqa5PM0XV9lChoBmgJaA9DCMxdS8gH3QXAlIaUUpRoFUsyaBZHQJhgWrilzlt1fZQoaAZoCWgPQwgniLoPQEoGwJSGlFKUaBVLMmgWR0CYYourp7kXdX2UKGgGaAloD0MIwsO0b+4v9r+UhpRSlGgVSzJoFkdAmGI690zTF3V9lChoBmgJaA9DCNTvwtZspQnAlIaUUpRoFUsyaBZHQJhh6j3225R1fZQoaAZoCWgPQwjgK7r1ml4CwJSGlFKUaBVLMmgWR0CYYZqsEJSjdX2UKGgGaAloD0MISnoYWp18CsCUhpRSlGgVSzJoFkdAmGO6FAVwgnV9lChoBmgJaA9DCN+Hg4QoPw3AlIaUUpRoFUsyaBZHQJhjaVObiId1fZQoaAZoCWgPQwi6ap4j8p38v5SGlFKUaBVLMmgWR0CYYxhwl0HRdX2UKGgGaAloD0MICOkpcoj4AsCUhpRSlGgVSzJoFkdAmGLIre67NHV9lChoBmgJaA9DCFsmw/F8Bvi/lIaUUpRoFUsyaBZHQJhk74REnb91fZQoaAZoCWgPQwjFkJxM3MoJwJSGlFKUaBVLMmgWR0CYZJ8hcJMQdX2UKGgGaAloD0MIEaYol8Yv/7+UhpRSlGgVSzJoFkdAmGROEIw/PnV9lChoBmgJaA9DCKZkOQmlLw3AlIaUUpRoFUsyaBZHQJhj/lhgE2Z1fZQoaAZoCWgPQwgceouH97wAwJSGlFKUaBVLMmgWR0CYZiNIsiB5dX2UKGgGaAloD0MI3UJXIlC9/r+UhpRSlGgVSzJoFkdAmGXSuhbno3V9lChoBmgJaA9DCLDKhcq/lgTAlIaUUpRoFUsyaBZHQJhlgaDPGAF1fZQoaAZoCWgPQwh6GjBI+lQLwJSGlFKUaBVLMmgWR0CYZTGyon8bdX2UKGgGaAloD0MILpCg+DGGA8CUhpRSlGgVSzJoFkdAmGdmeYlY2nV9lChoBmgJaA9DCO8AT1q4rAfAlIaUUpRoFUsyaBZHQJhnFg8bJfZ1fZQoaAZoCWgPQwgoDqDf908CwJSGlFKUaBVLMmgWR0CYZsVH4GlidX2UKGgGaAloD0MIi269pgdF9r+UhpRSlGgVSzJoFkdAmGZ1iay8jHV9lChoBmgJaA9DCMnMBS6Ptf+/lIaUUpRoFUsyaBZHQJhop7zCk451fZQoaAZoCWgPQwgJbM7BM+H8v5SGlFKUaBVLMmgWR0CYaFdHlOoHdX2UKGgGaAloD0MIlxsMdVjh8b+UhpRSlGgVSzJoFkdAmGgGUr08NnV9lChoBmgJaA9DCML8FTJXBg3AlIaUUpRoFUsyaBZHQJhntmTTvy91fZQoaAZoCWgPQwjZsnxdhv8FwJSGlFKUaBVLMmgWR0CYaeRlpXZHdX2UKGgGaAloD0MIIXTQJRw6DsCUhpRSlGgVSzJoFkdAmGmT7uUliXV9lChoBmgJaA9DCI3uIHamkPu/lIaUUpRoFUsyaBZHQJhpQw5/9YR1fZQoaAZoCWgPQwhq2zAKgkf+v5SGlFKUaBVLMmgWR0CYaPM495hSdX2UKGgGaAloD0MI/89hvrxAAsCUhpRSlGgVSzJoFkdAmGsez2OAAnV9lChoBmgJaA9DCDav6qwWmPi/lIaUUpRoFUsyaBZHQJhqzhJiAlR1fZQoaAZoCWgPQwi4Pqw3agX5v5SGlFKUaBVLMmgWR0CYan08vEjxdX2UKGgGaAloD0MIOJ7PgHqzBsCUhpRSlGgVSzJoFkdAmGotTxXnyXV9lChoBmgJaA9DCHkj88gfDAvAlIaUUpRoFUsyaBZHQJhsWFev6j51fZQoaAZoCWgPQwgeNSbEXBL6v5SGlFKUaBVLMmgWR0CYbAeGfwqidX2UKGgGaAloD0MIRSqMLQR5DMCUhpRSlGgVSzJoFkdAmGu2XokiU3V9lChoBmgJaA9DCOGWj6SkhwjAlIaUUpRoFUsyaBZHQJhrZplBhQZ1fZQoaAZoCWgPQwg+0AoMWf0IwJSGlFKUaBVLMmgWR0CYbX6f8MuwdX2UKGgGaAloD0MIrDsW26TiAcCUhpRSlGgVSzJoFkdAmG0t3wCr93V9lChoBmgJaA9DCK33G+24IQLAlIaUUpRoFUsyaBZHQJhs3Kifxtp1fZQoaAZoCWgPQwi6+UZ0z/r4v5SGlFKUaBVLMmgWR0CYbI1IiC8OdX2UKGgGaAloD0MIQndJnBXR/L+UhpRSlGgVSzJoFkdAmG7CiZfD13V9lChoBmgJaA9DCKyrArUYXAPAlIaUUpRoFUsyaBZHQJhucf3evZB1fZQoaAZoCWgPQwgktVAyOTUIwJSGlFKUaBVLMmgWR0CYbiHwgDA8dX2UKGgGaAloD0MIVWthFtrZD8CUhpRSlGgVSzJoFkdAmG3SZSeiBXV9lChoBmgJaA9DCMvydRn+k/q/lIaUUpRoFUsyaBZHQJhv7p7kXDZ1fZQoaAZoCWgPQwgAH7x2aUP+v5SGlFKUaBVLMmgWR0CYb53bmEGrdX2UKGgGaAloD0MIj/rrFRa8CsCUhpRSlGgVSzJoFkdAmG9NKRMewXV9lChoBmgJaA9DCDroEg69Rf2/lIaUUpRoFUsyaBZHQJhu/Tw2ETR1fZQoaAZoCWgPQwjfNehLb18DwJSGlFKUaBVLMmgWR0CYcRFbmlqKdX2UKGgGaAloD0MIvhWJCWr4+r+UhpRSlGgVSzJoFkdAmHDAg1WKdnV9lChoBmgJaA9DCMAEbt3Nk/m/lIaUUpRoFUsyaBZHQJhwb3g1m8N1fZQoaAZoCWgPQwhMio9PyG4AwJSGlFKUaBVLMmgWR0CYcB+WnjyXdX2UKGgGaAloD0MIueLiqNwkBcCUhpRSlGgVSzJoFkdAmHI2wiaAnXV9lChoBmgJaA9DCOgzoN6MShDAlIaUUpRoFUsyaBZHQJhx5iCrcTJ1fZQoaAZoCWgPQwgX2GMipTkAwJSGlFKUaBVLMmgWR0CYcZU1hsqKdX2UKGgGaAloD0MIon4XtmYr/r+UhpRSlGgVSzJoFkdAmHFFRDTjN3V9lChoBmgJaA9DCDmYTYBh+fq/lIaUUpRoFUsyaBZHQJhzdeBxxT91fZQoaAZoCWgPQwiULv1LUtkBwJSGlFKUaBVLMmgWR0CYcyVJcxCZdX2UKGgGaAloD0MIldi1vd3S/L+UhpRSlGgVSzJoFkdAmHLUUTL4e3V9lChoBmgJaA9DCGHfTiLCnwPAlIaUUpRoFUsyaBZHQJhyhFpfx+d1fZQoaAZoCWgPQwgke4SaIZUEwJSGlFKUaBVLMmgWR0CYdKONo8ISdX2UKGgGaAloD0MImFEst7RaAsCUhpRSlGgVSzJoFkdAmHRTCpFTenV9lChoBmgJaA9DCH/1uG+1DgrAlIaUUpRoFUsyaBZHQJh0AefZmI11fZQoaAZoCWgPQwjgLZCg+LEMwJSGlFKUaBVLMmgWR0CYc7Hmig01dX2UKGgGaAloD0MII0p7gy9sAsCUhpRSlGgVSzJoFkdAmHW7ONYKY3V9lChoBmgJaA9DCDblCu9ykf+/lIaUUpRoFUsyaBZHQJh1akRBeHB1fZQoaAZoCWgPQwigNqrTgawFwJSGlFKUaBVLMmgWR0CYdRlSS/0vdX2UKGgGaAloD0MIzjXM0HjCA8CUhpRSlGgVSzJoFkdAmHTJVbRne3V9lChoBmgJaA9DCHIZNzXQPPy/lIaUUpRoFUsyaBZHQJh20xQBPsR1fZQoaAZoCWgPQwixUkFF1a8FwJSGlFKUaBVLMmgWR0CYdoIeYD1XdX2UKGgGaAloD0MIaqSl8nakAMCUhpRSlGgVSzJoFkdAmHYw/LTx5XV9lChoBmgJaA9DCCY5YFeTJwXAlIaUUpRoFUsyaBZHQJh14WCVbA11fZQoaAZoCWgPQwitiQW+onsPwJSGlFKUaBVLMmgWR0CYd+2+PBBSdX2UKGgGaAloD0MIk6tY/KawBMCUhpRSlGgVSzJoFkdAmHec6aLGaXV9lChoBmgJaA9DCGyvBb03Bv+/lIaUUpRoFUsyaBZHQJh3S801qFh1fZQoaAZoCWgPQwgK8rOR68YLwJSGlFKUaBVLMmgWR0CYdvvb48EFdX2UKGgGaAloD0MI6zu/KEF/A8CUhpRSlGgVSzJoFkdAmHkPStvGZXV9lChoBmgJaA9DCN9sc2N6gv+/lIaUUpRoFUsyaBZHQJh4voePq9p1fZQoaAZoCWgPQwhmwcQfRT0HwJSGlFKUaBVLMmgWR0CYeG1TBInSdX2UKGgGaAloD0MIy54ENufgCMCUhpRSlGgVSzJoFkdAmHgdedCmdnV9lChoBmgJaA9DCPYpx2RxHwPAlIaUUpRoFUsyaBZHQJh6KO1fE4x1fZQoaAZoCWgPQwh/SwD+KbUDwJSGlFKUaBVLMmgWR0CYedf/3nIRdX2UKGgGaAloD0MI4JwRpb2BAcCUhpRSlGgVSzJoFkdAmHmGzWwu/XV9lChoBmgJaA9DCMGqevmdJgHAlIaUUpRoFUsyaBZHQJh5Nu2qkuZ1fZQoaAZoCWgPQwiDbFm+LsMHwJSGlFKUaBVLMmgWR0CYe0bG3nZCdX2UKGgGaAloD0MImu/gJw5AC8CUhpRSlGgVSzJoFkdAmHr11Oj7AXV9lChoBmgJaA9DCNGVCFT/YAzAlIaUUpRoFUsyaBZHQJh6pKSPluF1fZQoaAZoCWgPQwgkDtlAuhgKwJSGlFKUaBVLMmgWR0CYelSxZ+x4dX2UKGgGaAloD0MIizidZKurBcCUhpRSlGgVSzJoFkdAmHxgdfb9InV9lChoBmgJaA9DCAgGED6UyAXAlIaUUpRoFUsyaBZHQJh8D4N7SiN1fZQoaAZoCWgPQwhCP1OvW8QBwJSGlFKUaBVLMmgWR0CYe75PuXu3dX2UKGgGaAloD0MI54pSQrDKA8CUhpRSlGgVSzJoFkdAmHtujdpItnV9lChoBmgJaA9DCKq53GCoQwDAlIaUUpRoFUsyaBZHQJh9cq9XcQB1fZQoaAZoCWgPQwgAHlGhujn/v5SGlFKUaBVLMmgWR0CYfSHmA9V4dX2UKGgGaAloD0MIXp8561NOAMCUhpRSlGgVSzJoFkdAmHzQ0CRwInV9lChoBmgJaA9DCEUQ5+EEJgrAlIaUUpRoFUsyaBZHQJh8gMy8BdV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (770 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.3587259541731327, "std_reward": 0.5124734967288425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T21:05:51.635562"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:140a7c936c001a5d94134c652a0547b572192d5e45f81caa648d4dc8e756d7dd
|
3 |
+
size 3117
|