Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 274.95 +/- 19.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7050420550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70504205e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7050420670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7050420700>", "_build": "<function ActorCriticPolicy._build at 0x7f7050420790>", "forward": "<function ActorCriticPolicy.forward at 0x7f7050420820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f70504208b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7050420940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70504209d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7050420a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7050420af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7050420b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f705041e330>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c7ec30670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c7ec30700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c7ec30790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c7ec30820>", "_build": "<function ActorCriticPolicy._build at 0x7f5c7ec308b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c7ec30940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c7ec309d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c7ec30a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c7ec30af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c7ec30b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c7ec30c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c7ec30ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5c7ec29870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673818521040691845, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1jJr2PqiC63sRRt8l8rbInefo6WtN3NgAAgD8AAIA/DfilPWPDjz+yWpQ+UTkDv1B33j0xQoO8AAAAAAAAAADAysO9fy1MPxJpIr56+re+2ShIvUBwZLwAAAAAAAAAANoQVD54i+g+9CcmvtYTi74gE509x5m/vQAAAAAAAAAAxr12PmYaUT9wFOy9pH7QvusZCD51P3y8AAAAAAAAAACgWis+r7MHP6kDJb5DRJy+ejx7vANICb4AAAAAAAAAAAZmFT6Azfw+xg6ovucyk747DhG9g9TvvQAAAAAAAAAA2i2oPapeVj8uQ4e9Zl7gvokmGj7y/RO+AAAAAAAAAAAAcBK7Ukj+uVLDFbjeHoazNDC7O6YvMDcAAIA/AACAP/sPh7608Ve9lgGdOgH/jjnYgro++1bjuQAAgD8AAIA/wJ4hPpAYij9vYQE/kY8Dv+5FOT72An8+AAAAAAAAAABdFWy+uwHpvHj18bpsvnm58CROPofNGjoAAIA/AACAPwBttL3sMfq51oa4u4AiRDe+MqG7RjfAOgAAAAAAAIA/LV8PPucmrT/AQu8+37n1vn38fz698nQ9AAAAAAAAAACzGjK9XAUTvFPJaTxj4hM9Dd2EPSjA7r0AAIA/AACAP9M6t75g8jU/bpYVPrkYrb5tNgq+9pKdPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkfP+P850bECUhpRSlIwBbJRNJwGMAXSUR0CQvWNdqtYCdX2UKGgGaAloD0MI7X+AtWolckCUhpRSlGgVTSABaBZHQJC94MF2V3V1fZQoaAZoCWgPQwijycUYWJtxQJSGlFKUaBVNGwFoFkdAkL3xtUGVzXV9lChoBmgJaA9DCJmAXyMJhHFAlIaUUpRoFU12AWgWR0CQvqu8K5TZdX2UKGgGaAloD0MI85ApHwKdcECUhpRSlGgVTUUBaBZHQJC+rCrLhaV1fZQoaAZoCWgPQwiG5c+3hWluQJSGlFKUaBVNDwFoFkdAkL+Dl1bJOnV9lChoBmgJaA9DCIuH9xyY5nBAlIaUUpRoFU0yAWgWR0CQwKFYuCf6dX2UKGgGaAloD0MIzEHQ0epVckCUhpRSlGgVTQABaBZHQJDBMMa0hNd1fZQoaAZoCWgPQwi+LsN/unhxQJSGlFKUaBVNOQFoFkdAkMGIzN2TxHV9lChoBmgJaA9DCGBbP/1ns3BAlIaUUpRoFU0uAWgWR0CQwgUCaJAMdX2UKGgGaAloD0MIpFLsaJzMcECUhpRSlGgVTRsBaBZHQJDC4WUKRdR1fZQoaAZoCWgPQwgO8+UFWKlyQJSGlFKUaBVNKQFoFkdAkMQTRMN+b3V9lChoBmgJaA9DCKjlB65y33FAlIaUUpRoFU0PAWgWR0CQxRg3tKI0dX2UKGgGaAloD0MIqS9LO7VAb0CUhpRSlGgVS/poFkdAkMW5K3/gi3V9lChoBmgJaA9DCLHfE+uU8HBAlIaUUpRoFU0XAWgWR0CQxdwj+rEMdX2UKGgGaAloD0MI3bJD/ENCcECUhpRSlGgVTQ4BaBZHQJDF5tHhCMR1fZQoaAZoCWgPQwjhfyvZsf1xQJSGlFKUaBVNSAFoFkdAkMaZmdy1eHV9lChoBmgJaA9DCB9Hc2SlI3JAlIaUUpRoFU0wAWgWR0CQx5kP+XJHdX2UKGgGaAloD0MIzGCMSJREbkCUhpRSlGgVTQsBaBZHQJDIKxSpBHF1fZQoaAZoCWgPQwizXaEP1oVyQJSGlFKUaBVNLgFoFkdAkMhVKoQ4CXV9lChoBmgJaA9DCKJe8GkOyHBAlIaUUpRoFU1JAWgWR0CQyTG/N7jUdX2UKGgGaAloD0MISYCaWjbBb0CUhpRSlGgVTR4BaBZHQJDJ+LS/j811fZQoaAZoCWgPQwiaXmIsU6xuQJSGlFKUaBVL8WgWR0CQyf3o9s7/dX2UKGgGaAloD0MIhqxu9Rw4bkCUhpRSlGgVS/hoFkdAkMsl7Y02tXV9lChoBmgJaA9DCEELCRjdhHBAlIaUUpRoFU0kAWgWR0CQyy8+zMRpdX2UKGgGaAloD0MIiV3b223wcECUhpRSlGgVTS8BaBZHQJDLLv+fh/B1fZQoaAZoCWgPQwhljA+zl01VQJSGlFKUaBVN6ANoFkdAkMzCRbKRuHV9lChoBmgJaA9DCHZsBOK19HBAlIaUUpRoFU0fAWgWR0CQzVMa0hNedX2UKGgGaAloD0MIXJGYoMb3cUCUhpRSlGgVS/toFkdAkM3GYjSofnV9lChoBmgJaA9DCEQ0uoPYPVNAlIaUUpRoFUvIaBZHQJDOde6Zpi91fZQoaAZoCWgPQwjQDU3ZaTpyQJSGlFKUaBVNGwFoFkdAkM6mTxG2C3V9lChoBmgJaA9DCM9qgT0m9G9AlIaUUpRoFUv0aBZHQJDPJ62OQyR1fZQoaAZoCWgPQwjVdhN8k/hxQJSGlFKUaBVNNQFoFkdAkM+NqL0jDHV9lChoBmgJaA9DCIY8ghspXm9AlIaUUpRoFU1PAWgWR0CQz6eBg/kedX2UKGgGaAloD0MI7+GS485NcECUhpRSlGgVTTgBaBZHQJDQLFMqSYB1fZQoaAZoCWgPQwg2OuenuKBuQJSGlFKUaBVNGwFoFkdAkNChIz3yqnV9lChoBmgJaA9DCGK7e4Auq3FAlIaUUpRoFUvpaBZHQJDRzmaH9FZ1fZQoaAZoCWgPQwi8ehUZ3W1yQJSGlFKUaBVNEQFoFkdAkNH1TFVDKHV9lChoBmgJaA9DCCANp8xNu25AlIaUUpRoFUv/aBZHQJDSgM6RyOt1fZQoaAZoCWgPQwj2fM1y2ZJyQJSGlFKUaBVNNgFoFkdAkNMUcGTs6nV9lChoBmgJaA9DCFmis8wijXNAlIaUUpRoFU1QAWgWR0CQ0x6dUbT+dX2UKGgGaAloD0MIoBaDh6mMcECUhpRSlGgVTTgBaBZHQJDUF3iaRZF1fZQoaAZoCWgPQwixU6waBJVxQJSGlFKUaBVL6GgWR0CQ1RXm/336dX2UKGgGaAloD0MIwf7r3LQtb0CUhpRSlGgVTREBaBZHQJDVMaVD8cd1fZQoaAZoCWgPQwjb+X5q/H5xQJSGlFKUaBVNKwFoFkdAkNVcsUZeiXV9lChoBmgJaA9DCGx7uyU5lGxAlIaUUpRoFU0QAWgWR0CQ1nPqs2ehdX2UKGgGaAloD0MIePF+3H7dcUCUhpRSlGgVTSwBaBZHQJDrof6oESx1fZQoaAZoCWgPQwiu1onL8W5wQJSGlFKUaBVNEAFoFkdAkOv/uLJjlXV9lChoBmgJaA9DCP6eWKdKD3JAlIaUUpRoFU1SAWgWR0CQ7F6vaDf4dX2UKGgGaAloD0MIKUAUzBgScECUhpRSlGgVTTcBaBZHQJDsuWTot+V1fZQoaAZoCWgPQwhVouwt5VdwQJSGlFKUaBVNTwFoFkdAkOy+Cf6Gg3V9lChoBmgJaA9DCKsJou6DwXJAlIaUUpRoFU0VAWgWR0CQ7YHFglWwdX2UKGgGaAloD0MIQ1Thz3BicECUhpRSlGgVTRsBaBZHQJDvb8HfMwF1fZQoaAZoCWgPQwjIDFTGf0NzQJSGlFKUaBVNQQFoFkdAkO988La24XV9lChoBmgJaA9DCIAomDEFqW5AlIaUUpRoFU0cAWgWR0CQ74lUp/gBdX2UKGgGaAloD0MIlnmrrkP4b0CUhpRSlGgVTT8BaBZHQJDv8F5fMOh1fZQoaAZoCWgPQwioOXmRCfJvQJSGlFKUaBVN7gFoFkdAkPA4caOxS3V9lChoBmgJaA9DCH2yYrj6mnFAlIaUUpRoFU0AAWgWR0CQ8N7PY4ACdX2UKGgGaAloD0MIxNLAj2p1cUCUhpRSlGgVTRkBaBZHQJDxTWattAN1fZQoaAZoCWgPQwj6Yu/Flz1tQJSGlFKUaBVNFwFoFkdAkPFYiC8OC3V9lChoBmgJaA9DCM+idypgJXFAlIaUUpRoFU0RAWgWR0CQ8kSBbwBpdX2UKGgGaAloD0MIj/tW60ROb0CUhpRSlGgVTW8BaBZHQJDypNKyv9t1fZQoaAZoCWgPQwiBlxk2isNyQJSGlFKUaBVNFwFoFkdAkPQkZaV2R3V9lChoBmgJaA9DCII2OXzSHW1AlIaUUpRoFU0WAWgWR0CQ9GwVCXyBdX2UKGgGaAloD0MIL6NYbumZbkCUhpRSlGgVTR0BaBZHQJD2IJWvKU51fZQoaAZoCWgPQwggt18+Wb5wQJSGlFKUaBVNQQFoFkdAkPYg8KXv6XV9lChoBmgJaA9DCLDHREpz8HFAlIaUUpRoFUvyaBZHQJD2XgFX7tR1fZQoaAZoCWgPQwho6Qq2EfJQQJSGlFKUaBVL4GgWR0CQ9pVI7NjcdX2UKGgGaAloD0MIB35Uw/6ncECUhpRSlGgVTUYBaBZHQJD2o176YVt1fZQoaAZoCWgPQwhKfy+FB55xQJSGlFKUaBVNZgFoFkdAkPeiKJl8PXV9lChoBmgJaA9DCGyU9ZvJqHFAlIaUUpRoFU0hAWgWR0CQ98AEt/WldX2UKGgGaAloD0MIuRgD63h+cUCUhpRSlGgVS+9oFkdAkPfT4UN8V3V9lChoBmgJaA9DCKipZWs9aHBAlIaUUpRoFU0hAWgWR0CQ+DcH4XXRdX2UKGgGaAloD0MIqwX2mEh4cUCUhpRSlGgVTQkBaBZHQJD4/wSamXR1fZQoaAZoCWgPQwgpzlFHB8lwQJSGlFKUaBVNAAFoFkdAkPpF3yI553V9lChoBmgJaA9DCImXp3PFtHJAlIaUUpRoFU0RAWgWR0CQ+l1k1/DtdX2UKGgGaAloD0MIaMu5FNfYb0CUhpRSlGgVTRgBaBZHQJD8ttdiUgV1fZQoaAZoCWgPQwhj7e9sj4NuQJSGlFKUaBVNKgFoFkdAkP2rdrO7hHV9lChoBmgJaA9DCMgnZOdt2HFAlIaUUpRoFUvxaBZHQJD+DUpd8iR1fZQoaAZoCWgPQwiyZfm6TPdwQJSGlFKUaBVNCwFoFkdAkP51E7W/anV9lChoBmgJaA9DCCQp6WFowmxAlIaUUpRoFU0FAWgWR0CQ/sdS2phndX2UKGgGaAloD0MIgxWnWgufcECUhpRSlGgVTSUBaBZHQJD/WetjkMl1fZQoaAZoCWgPQwhkIM8u32JBQJSGlFKUaBVL2mgWR0CRABX5nDiwdX2UKGgGaAloD0MIUFWhgZhYcECUhpRSlGgVTTYBaBZHQJEAJaiblRx1fZQoaAZoCWgPQwh3Mc10L1JyQJSGlFKUaBVNEQFoFkdAkQBg5zYEn3V9lChoBmgJaA9DCMfxQ6WRF21AlIaUUpRoFU0SAWgWR0CRAOEl3QlbdX2UKGgGaAloD0MIxyx7Elj7cECUhpRSlGgVTS0BaBZHQJEBFxrBTGZ1fZQoaAZoCWgPQwhPWOIBpSpwQJSGlFKUaBVNNAFoFkdAkQF5U96kZnV9lChoBmgJaA9DCJYJv9TP9HFAlIaUUpRoFUvxaBZHQJEB5Y9xIat1fZQoaAZoCWgPQwjJzAUuDw9yQJSGlFKUaBVNGAFoFkdAkQMKmXPZ7HV9lChoBmgJaA9DCFftmpBWN3JAlIaUUpRoFU0uAWgWR0CRBlML4N7TdX2UKGgGaAloD0MIHxFTIgnqcECUhpRSlGgVTRMBaBZHQJEGv4EfT1F1fZQoaAZoCWgPQwiaXmIs07VUQJSGlFKUaBVL4GgWR0CRByrzXjEOdX2UKGgGaAloD0MIqKlla/0WcECUhpRSlGgVTQoBaBZHQJEHOOR1X/51fZQoaAZoCWgPQwjx2To42JRyQJSGlFKUaBVNLwFoFkdAkQdp5Z8rqnV9lChoBmgJaA9DCAcj9gmgRnFAlIaUUpRoFUv2aBZHQJEH7p9qk/N1fZQoaAZoCWgPQwgKaY1B54FwQJSGlFKUaBVNMQFoFkdAkQhO2NNrTHV9lChoBmgJaA9DCLadtkbECXJAlIaUUpRoFU07AWgWR0CRCZjpcHGCdX2UKGgGaAloD0MI6NoX0AuNb0CUhpRSlGgVTQcBaBZHQJEJvqkdmxt1fZQoaAZoCWgPQwi4BUt1gV1xQJSGlFKUaBVL+2gWR0CRCcwKBun/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b532bc5f72214a0cd8180a9a1dda03bd8bcd2091acba9d04bf2e9cfa1f96afea
|
3 |
+
size 147400
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c7ec30670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c7ec30700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c7ec30790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c7ec30820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5c7ec308b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5c7ec30940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c7ec309d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c7ec30a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5c7ec30af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c7ec30b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c7ec30c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c7ec30ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5c7ec29870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673818521040691845,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1jJr2PqiC63sRRt8l8rbInefo6WtN3NgAAgD8AAIA/DfilPWPDjz+yWpQ+UTkDv1B33j0xQoO8AAAAAAAAAADAysO9fy1MPxJpIr56+re+2ShIvUBwZLwAAAAAAAAAANoQVD54i+g+9CcmvtYTi74gE509x5m/vQAAAAAAAAAAxr12PmYaUT9wFOy9pH7QvusZCD51P3y8AAAAAAAAAACgWis+r7MHP6kDJb5DRJy+ejx7vANICb4AAAAAAAAAAAZmFT6Azfw+xg6ovucyk747DhG9g9TvvQAAAAAAAAAA2i2oPapeVj8uQ4e9Zl7gvokmGj7y/RO+AAAAAAAAAAAAcBK7Ukj+uVLDFbjeHoazNDC7O6YvMDcAAIA/AACAP/sPh7608Ve9lgGdOgH/jjnYgro++1bjuQAAgD8AAIA/wJ4hPpAYij9vYQE/kY8Dv+5FOT72An8+AAAAAAAAAABdFWy+uwHpvHj18bpsvnm58CROPofNGjoAAIA/AACAPwBttL3sMfq51oa4u4AiRDe+MqG7RjfAOgAAAAAAAIA/LV8PPucmrT/AQu8+37n1vn38fz698nQ9AAAAAAAAAACzGjK9XAUTvFPJaTxj4hM9Dd2EPSjA7r0AAIA/AACAP9M6t75g8jU/bpYVPrkYrb5tNgq+9pKdPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkfP+P850bECUhpRSlIwBbJRNJwGMAXSUR0CQvWNdqtYCdX2UKGgGaAloD0MI7X+AtWolckCUhpRSlGgVTSABaBZHQJC94MF2V3V1fZQoaAZoCWgPQwijycUYWJtxQJSGlFKUaBVNGwFoFkdAkL3xtUGVzXV9lChoBmgJaA9DCJmAXyMJhHFAlIaUUpRoFU12AWgWR0CQvqu8K5TZdX2UKGgGaAloD0MI85ApHwKdcECUhpRSlGgVTUUBaBZHQJC+rCrLhaV1fZQoaAZoCWgPQwiG5c+3hWluQJSGlFKUaBVNDwFoFkdAkL+Dl1bJOnV9lChoBmgJaA9DCIuH9xyY5nBAlIaUUpRoFU0yAWgWR0CQwKFYuCf6dX2UKGgGaAloD0MIzEHQ0epVckCUhpRSlGgVTQABaBZHQJDBMMa0hNd1fZQoaAZoCWgPQwi+LsN/unhxQJSGlFKUaBVNOQFoFkdAkMGIzN2TxHV9lChoBmgJaA9DCGBbP/1ns3BAlIaUUpRoFU0uAWgWR0CQwgUCaJAMdX2UKGgGaAloD0MIpFLsaJzMcECUhpRSlGgVTRsBaBZHQJDC4WUKRdR1fZQoaAZoCWgPQwgO8+UFWKlyQJSGlFKUaBVNKQFoFkdAkMQTRMN+b3V9lChoBmgJaA9DCKjlB65y33FAlIaUUpRoFU0PAWgWR0CQxRg3tKI0dX2UKGgGaAloD0MIqS9LO7VAb0CUhpRSlGgVS/poFkdAkMW5K3/gi3V9lChoBmgJaA9DCLHfE+uU8HBAlIaUUpRoFU0XAWgWR0CQxdwj+rEMdX2UKGgGaAloD0MI3bJD/ENCcECUhpRSlGgVTQ4BaBZHQJDF5tHhCMR1fZQoaAZoCWgPQwjhfyvZsf1xQJSGlFKUaBVNSAFoFkdAkMaZmdy1eHV9lChoBmgJaA9DCB9Hc2SlI3JAlIaUUpRoFU0wAWgWR0CQx5kP+XJHdX2UKGgGaAloD0MIzGCMSJREbkCUhpRSlGgVTQsBaBZHQJDIKxSpBHF1fZQoaAZoCWgPQwizXaEP1oVyQJSGlFKUaBVNLgFoFkdAkMhVKoQ4CXV9lChoBmgJaA9DCKJe8GkOyHBAlIaUUpRoFU1JAWgWR0CQyTG/N7jUdX2UKGgGaAloD0MISYCaWjbBb0CUhpRSlGgVTR4BaBZHQJDJ+LS/j811fZQoaAZoCWgPQwiaXmIsU6xuQJSGlFKUaBVL8WgWR0CQyf3o9s7/dX2UKGgGaAloD0MIhqxu9Rw4bkCUhpRSlGgVS/hoFkdAkMsl7Y02tXV9lChoBmgJaA9DCEELCRjdhHBAlIaUUpRoFU0kAWgWR0CQyy8+zMRpdX2UKGgGaAloD0MIiV3b223wcECUhpRSlGgVTS8BaBZHQJDLLv+fh/B1fZQoaAZoCWgPQwhljA+zl01VQJSGlFKUaBVN6ANoFkdAkMzCRbKRuHV9lChoBmgJaA9DCHZsBOK19HBAlIaUUpRoFU0fAWgWR0CQzVMa0hNedX2UKGgGaAloD0MIXJGYoMb3cUCUhpRSlGgVS/toFkdAkM3GYjSofnV9lChoBmgJaA9DCEQ0uoPYPVNAlIaUUpRoFUvIaBZHQJDOde6Zpi91fZQoaAZoCWgPQwjQDU3ZaTpyQJSGlFKUaBVNGwFoFkdAkM6mTxG2C3V9lChoBmgJaA9DCM9qgT0m9G9AlIaUUpRoFUv0aBZHQJDPJ62OQyR1fZQoaAZoCWgPQwjVdhN8k/hxQJSGlFKUaBVNNQFoFkdAkM+NqL0jDHV9lChoBmgJaA9DCIY8ghspXm9AlIaUUpRoFU1PAWgWR0CQz6eBg/kedX2UKGgGaAloD0MI7+GS485NcECUhpRSlGgVTTgBaBZHQJDQLFMqSYB1fZQoaAZoCWgPQwg2OuenuKBuQJSGlFKUaBVNGwFoFkdAkNChIz3yqnV9lChoBmgJaA9DCGK7e4Auq3FAlIaUUpRoFUvpaBZHQJDRzmaH9FZ1fZQoaAZoCWgPQwi8ehUZ3W1yQJSGlFKUaBVNEQFoFkdAkNH1TFVDKHV9lChoBmgJaA9DCCANp8xNu25AlIaUUpRoFUv/aBZHQJDSgM6RyOt1fZQoaAZoCWgPQwj2fM1y2ZJyQJSGlFKUaBVNNgFoFkdAkNMUcGTs6nV9lChoBmgJaA9DCFmis8wijXNAlIaUUpRoFU1QAWgWR0CQ0x6dUbT+dX2UKGgGaAloD0MIoBaDh6mMcECUhpRSlGgVTTgBaBZHQJDUF3iaRZF1fZQoaAZoCWgPQwixU6waBJVxQJSGlFKUaBVL6GgWR0CQ1RXm/336dX2UKGgGaAloD0MIwf7r3LQtb0CUhpRSlGgVTREBaBZHQJDVMaVD8cd1fZQoaAZoCWgPQwjb+X5q/H5xQJSGlFKUaBVNKwFoFkdAkNVcsUZeiXV9lChoBmgJaA9DCGx7uyU5lGxAlIaUUpRoFU0QAWgWR0CQ1nPqs2ehdX2UKGgGaAloD0MIePF+3H7dcUCUhpRSlGgVTSwBaBZHQJDrof6oESx1fZQoaAZoCWgPQwiu1onL8W5wQJSGlFKUaBVNEAFoFkdAkOv/uLJjlXV9lChoBmgJaA9DCP6eWKdKD3JAlIaUUpRoFU1SAWgWR0CQ7F6vaDf4dX2UKGgGaAloD0MIKUAUzBgScECUhpRSlGgVTTcBaBZHQJDsuWTot+V1fZQoaAZoCWgPQwhVouwt5VdwQJSGlFKUaBVNTwFoFkdAkOy+Cf6Gg3V9lChoBmgJaA9DCKsJou6DwXJAlIaUUpRoFU0VAWgWR0CQ7YHFglWwdX2UKGgGaAloD0MIQ1Thz3BicECUhpRSlGgVTRsBaBZHQJDvb8HfMwF1fZQoaAZoCWgPQwjIDFTGf0NzQJSGlFKUaBVNQQFoFkdAkO988La24XV9lChoBmgJaA9DCIAomDEFqW5AlIaUUpRoFU0cAWgWR0CQ74lUp/gBdX2UKGgGaAloD0MIlnmrrkP4b0CUhpRSlGgVTT8BaBZHQJDv8F5fMOh1fZQoaAZoCWgPQwioOXmRCfJvQJSGlFKUaBVN7gFoFkdAkPA4caOxS3V9lChoBmgJaA9DCH2yYrj6mnFAlIaUUpRoFU0AAWgWR0CQ8N7PY4ACdX2UKGgGaAloD0MIxNLAj2p1cUCUhpRSlGgVTRkBaBZHQJDxTWattAN1fZQoaAZoCWgPQwj6Yu/Flz1tQJSGlFKUaBVNFwFoFkdAkPFYiC8OC3V9lChoBmgJaA9DCM+idypgJXFAlIaUUpRoFU0RAWgWR0CQ8kSBbwBpdX2UKGgGaAloD0MIj/tW60ROb0CUhpRSlGgVTW8BaBZHQJDypNKyv9t1fZQoaAZoCWgPQwiBlxk2isNyQJSGlFKUaBVNFwFoFkdAkPQkZaV2R3V9lChoBmgJaA9DCII2OXzSHW1AlIaUUpRoFU0WAWgWR0CQ9GwVCXyBdX2UKGgGaAloD0MIL6NYbumZbkCUhpRSlGgVTR0BaBZHQJD2IJWvKU51fZQoaAZoCWgPQwggt18+Wb5wQJSGlFKUaBVNQQFoFkdAkPYg8KXv6XV9lChoBmgJaA9DCLDHREpz8HFAlIaUUpRoFUvyaBZHQJD2XgFX7tR1fZQoaAZoCWgPQwho6Qq2EfJQQJSGlFKUaBVL4GgWR0CQ9pVI7NjcdX2UKGgGaAloD0MIB35Uw/6ncECUhpRSlGgVTUYBaBZHQJD2o176YVt1fZQoaAZoCWgPQwhKfy+FB55xQJSGlFKUaBVNZgFoFkdAkPeiKJl8PXV9lChoBmgJaA9DCGyU9ZvJqHFAlIaUUpRoFU0hAWgWR0CQ98AEt/WldX2UKGgGaAloD0MIuRgD63h+cUCUhpRSlGgVS+9oFkdAkPfT4UN8V3V9lChoBmgJaA9DCKipZWs9aHBAlIaUUpRoFU0hAWgWR0CQ+DcH4XXRdX2UKGgGaAloD0MIqwX2mEh4cUCUhpRSlGgVTQkBaBZHQJD4/wSamXR1fZQoaAZoCWgPQwgpzlFHB8lwQJSGlFKUaBVNAAFoFkdAkPpF3yI553V9lChoBmgJaA9DCImXp3PFtHJAlIaUUpRoFU0RAWgWR0CQ+l1k1/DtdX2UKGgGaAloD0MIaMu5FNfYb0CUhpRSlGgVTRgBaBZHQJD8ttdiUgV1fZQoaAZoCWgPQwhj7e9sj4NuQJSGlFKUaBVNKgFoFkdAkP2rdrO7hHV9lChoBmgJaA9DCMgnZOdt2HFAlIaUUpRoFUvxaBZHQJD+DUpd8iR1fZQoaAZoCWgPQwiyZfm6TPdwQJSGlFKUaBVNCwFoFkdAkP51E7W/anV9lChoBmgJaA9DCCQp6WFowmxAlIaUUpRoFU0FAWgWR0CQ/sdS2phndX2UKGgGaAloD0MIgxWnWgufcECUhpRSlGgVTSUBaBZHQJD/WetjkMl1fZQoaAZoCWgPQwhkIM8u32JBQJSGlFKUaBVL2mgWR0CRABX5nDiwdX2UKGgGaAloD0MIUFWhgZhYcECUhpRSlGgVTTYBaBZHQJEAJaiblRx1fZQoaAZoCWgPQwh3Mc10L1JyQJSGlFKUaBVNEQFoFkdAkQBg5zYEn3V9lChoBmgJaA9DCMfxQ6WRF21AlIaUUpRoFU0SAWgWR0CRAOEl3QlbdX2UKGgGaAloD0MIxyx7Elj7cECUhpRSlGgVTS0BaBZHQJEBFxrBTGZ1fZQoaAZoCWgPQwhPWOIBpSpwQJSGlFKUaBVNNAFoFkdAkQF5U96kZnV9lChoBmgJaA9DCJYJv9TP9HFAlIaUUpRoFUvxaBZHQJEB5Y9xIat1fZQoaAZoCWgPQwjJzAUuDw9yQJSGlFKUaBVNGAFoFkdAkQMKmXPZ7HV9lChoBmgJaA9DCFftmpBWN3JAlIaUUpRoFU0uAWgWR0CRBlML4N7TdX2UKGgGaAloD0MIHxFTIgnqcECUhpRSlGgVTRMBaBZHQJEGv4EfT1F1fZQoaAZoCWgPQwiaXmIs07VUQJSGlFKUaBVL4GgWR0CRByrzXjEOdX2UKGgGaAloD0MIqKlla/0WcECUhpRSlGgVTQoBaBZHQJEHOOR1X/51fZQoaAZoCWgPQwjx2To42JRyQJSGlFKUaBVNLwFoFkdAkQdp5Z8rqnV9lChoBmgJaA9DCAcj9gmgRnFAlIaUUpRoFUv2aBZHQJEH7p9qk/N1fZQoaAZoCWgPQwgKaY1B54FwQJSGlFKUaBVNMQFoFkdAkQhO2NNrTHV9lChoBmgJaA9DCLadtkbECXJAlIaUUpRoFU07AWgWR0CRCZjpcHGCdX2UKGgGaAloD0MI6NoX0AuNb0CUhpRSlGgVTQcBaBZHQJEJvqkdmxt1fZQoaAZoCWgPQwi4BUt1gV1xQJSGlFKUaBVL+2gWR0CRCcwKBun/dWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fd450d2a3fd344276c8135efcd2a8dc36a470bd92fa4946a331c19e09fbfd5d
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a902b8411648eed50ec365270cdfbd4e713f151566bb1ca8f59d4a41e89174
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 274.94524582565595, "std_reward": 19.011021772747636, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T21:53:58.399716"}
|