canergen commited on
Commit
3351660
1 Parent(s): 95c5e3f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: scvi-tools
3
+ license: cc-by-4.0
4
+ tags:
5
+ - biology
6
+ - genomics
7
+ - single-cell
8
+ - model_cls_name:SCVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
+ - modality:rna
12
+ - tissue:heart
13
+ - annotated:True
14
+ ---
15
+
16
+
17
+ ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space, integrate technical batches and impute dropouts.
19
+ The learned low-dimensional latent representation of the data can be used for visualization and
20
+ clustering.
21
+
22
+ scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
23
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
24
+
25
+ - See our original manuscript for further details of the model:
26
+ [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
27
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
28
+ to leverage pre-trained models.
29
+
30
+ This model can be used for fine tuning on new data using our Arches framework:
31
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
32
+
33
+
34
+ # Model Description
35
+
36
+ Combined single cell and single nuclei RNA-Seq data of 485K cardiac cells with annotations.
37
+
38
+ # Metrics
39
+
40
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
+
42
+ <details>
43
+ <summary><strong>Coefficient of variation</strong></summary>
44
+
45
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
46
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
48
+ space might still be useful for analysis.
49
+
50
+ **Cell-wise Coefficient of Variation**:
51
+
52
+ | Metric | Training Value | Validation Value |
53
+ |-------------------------|----------------|------------------|
54
+ | Mean Absolute Error | 1.14 | 1.16 |
55
+ | Pearson Correlation | 0.65 | 0.64 |
56
+ | Spearman Correlation | 0.70 | 0.71 |
57
+ | R² (R-Squared) | 0.12 | 0.14 |
58
+
59
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
60
+ preserved by the generated model expression. This value is usually quite high.
61
+
62
+ **Gene-wise Coefficient of Variation**:
63
+
64
+ | Metric | Training Value |
65
+ |-------------------------|----------------|
66
+ | Mean Absolute Error | 2.68 |
67
+ | Pearson Correlation | 0.85 |
68
+ | Spearman Correlation | 0.95 |
69
+ | R² (R-Squared) | -0.01 |
70
+
71
+ </details>
72
+
73
+ <details>
74
+ <summary><strong>Differential expression metric</strong></summary>
75
+
76
+ The differential expression metric provides a summary of the differential expression analysis
77
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
78
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
79
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
80
+ cell-type.
81
+
82
+ **Differential expression**:
83
+
84
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
85
+ | --- | --- | --- | --- | --- | --- | --- | --- |
86
+ | Ventricular_Cardiomyocyte | 0.94 | 1.19 | 0.65 | 0.96 | 0.29 | 0.91 | 5307.00 |
87
+ | Endothelial | 0.97 | 0.90 | 0.63 | 0.91 | 0.26 | 0.94 | 4109.00 |
88
+ | Pericytes | 0.92 | 1.06 | 0.40 | 0.85 | 0.21 | 0.87 | 3204.00 |
89
+ | Fibroblast | 0.94 | 1.28 | 0.60 | 0.93 | 0.35 | 0.90 | 2446.00 |
90
+ | Atrial_Cardiomyocyte | 0.93 | 2.31 | 0.55 | 0.87 | 0.36 | 0.84 | 1009.00 |
91
+ | Myeloid | 0.88 | 2.19 | 0.53 | 0.87 | 0.40 | 0.90 | 957.00 |
92
+ | Lymphoid | 0.90 | 3.20 | 0.46 | 0.77 | 0.31 | 0.85 | 653.00 |
93
+ | Smooth_muscle_cells | 0.85 | 2.90 | 0.53 | 0.74 | 0.33 | 0.80 | 641.00 |
94
+ | Neuronal | 0.43 | 5.10 | 0.48 | 0.48 | 0.38 | 0.65 | 153.00 |
95
+ | Adipocytes | 0.84 | 4.31 | 0.55 | 0.74 | 0.51 | 0.80 | 145.00 |
96
+ | Mesothelial | 0.37 | 9.51 | 0.34 | 0.28 | 0.40 | 0.65 | 17.00 |
97
+
98
+ </details>
99
+
100
+ # Model Properties
101
+
102
+ We provide here key parameters used to setup and train the model.
103
+
104
+ <details>
105
+ <summary><strong>Model Parameters</strong></summary>
106
+
107
+ These provide the settings to setup the original model:
108
+ ```json
109
+ {
110
+ "n_hidden": 128,
111
+ "n_latent": 10,
112
+ "n_layers": 1,
113
+ "dropout_rate": 0.1,
114
+ "dispersion": "gene",
115
+ "gene_likelihood": "zinb",
116
+ "latent_distribution": "normal"
117
+ }
118
+ ```
119
+
120
+ </details>
121
+
122
+ <details>
123
+ <summary><strong>Setup Data Arguments</strong></summary>
124
+
125
+ Arguments passed to setup_anndata of the original model:
126
+ ```json
127
+ {
128
+ "layer": "counts",
129
+ "batch_key": null,
130
+ "labels_key": null,
131
+ "size_factor_key": null,
132
+ "categorical_covariate_keys": [
133
+ "cell_source",
134
+ "donor"
135
+ ],
136
+ "continuous_covariate_keys": [
137
+ "percent_mito",
138
+ "percent_ribo"
139
+ ]
140
+ }
141
+ ```
142
+
143
+ </details>
144
+
145
+ <details>
146
+ <summary><strong>Data Registry</strong></summary>
147
+
148
+ Registry elements for AnnData manager:
149
+ | Registry Key | scvi-tools Location |
150
+ |------------------------|--------------------------------------------|
151
+ | X | adata.layers['counts'] |
152
+ | batch | adata.obs['_scvi_batch'] |
153
+ | extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] |
154
+ | extra_continuous_covs | adata.obsm['_scvi_extra_continuous_covs'] |
155
+ | labels | adata.obs['_scvi_labels'] |
156
+ | latent_qzm | adata.obsm['scvi_latent_qzm'] |
157
+ | latent_qzv | adata.obsm['scvi_latent_qzv'] |
158
+ | minify_type | adata.uns['_scvi_adata_minify_type'] |
159
+ | observed_lib_size | adata.obs['observed_lib_size'] |
160
+
161
+ - **Data is Minified**: False
162
+
163
+ </details>
164
+
165
+ <details>
166
+ <summary><strong>Summary Statistics</strong></summary>
167
+
168
+ | Summary Stat Key | Value |
169
+ |--------------------------|-------|
170
+ | n_batch | 1 |
171
+ | n_cells | 18641 |
172
+ | n_extra_categorical_covs | 2 |
173
+ | n_extra_continuous_covs | 2 |
174
+ | n_labels | 1 |
175
+ | n_latent_qzm | 10 |
176
+ | n_latent_qzv | 10 |
177
+ | n_vars | 1200 |
178
+
179
+ </details>
180
+
181
+
182
+ <details>
183
+ <summary><strong>Training</strong></summary>
184
+
185
+ <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
186
+ sure to provide this field if you want users to be able to access your training data. See the
187
+ scvi-tools documentation for details. -->
188
+ **Training data url**: Not provided by uploader
189
+
190
+ If provided by the original uploader, for those interested in understanding or replicating the
191
+ training process, the code is available at the link below.
192
+
193
+ **Training Code URL**: Not provided by uploader
194
+
195
+ </details>
196
+
197
+
198
+ # References
199
+
200
+ Kazumasa Kanemaru, James Cranley, Daniele Muraro, Antonio M. A. Miranda, Siew Yen Ho, Anna Wilbrey-Clark, Jan Patrick Pett, Krzysztof Polanski, Laura Richardson, Monika Litvinukova, Natsuhiko Kumasaka, Yue Qin, Zuzanna Jablonska, Claudia I. Semprich, Lukas Mach, Monika Dabrowska, Nathan Richoz, Liam Bolt, Lira Mamanova, Rakeshlal Kapuge, Sam N. Barnett, Shani Perera, Carlos Talavera-López, Ilaria Mulas, Krishnaa T. Mahbubani, Liz Tuck, Lu Wang, Margaret M. Huang, Martin Prete, Sophie Pritchard, John Dark, Kourosh Saeb-Parsy, Minal Patel, Menna R. Clatworthy, Norbert Hübner, Rasheda A. Chowdhury, Michela Noseda & Sarah A. Teichmann. Spatially resolved multiomics of human cardiac niches. Nature, July 2023. doi:10.1038/s41586-023-06311-1.