File size: 11,808 Bytes
48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 e14d0bc 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 48c12f3 0bd1b75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCANVI
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- tissue:nose
- tissue:respiratory airway
- tissue:lung parenchyma
- annotated:True
---
ScANVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
latent space, integrate technical batches and impute dropouts.
In addition, to scVI, ScANVI is a semi-supervised model that can leverage labeled data to learn a
cell-type classifier in the latent space and afterward predict cell types of new data.
The learned low-dimensional latent representation of the data can be used for visualization and
clustering.
scANVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
cell-type annotation for a subset of cells.
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scanvi.html).
- See our original manuscript for further details of the model:
[scANVI manuscript](https://www.embopress.org/doi/full/10.15252/msb.20209620).
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
how to leverage pre-trained models.
This model can be used for fine tuning on new data using our Arches framework:
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
# Model Description
The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung.
# Metrics
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
<details>
<summary><strong>Coefficient of variation</strong></summary>
The cell-wise coefficient of variation summarizes how well variation between different cells is
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
, we would recommend not to use generated data for downstream analysis, while the generated latent
space might still be useful for analysis.
**Cell-wise Coefficient of Variation**:
| Metric | Training Value |
|-------------------------|----------------|
| Mean Absolute Error | 1.43 |
| Pearson Correlation | 0.93 |
| Spearman Correlation | 0.85 |
| R² (R-Squared) | 0.85 |
The gene-wise coefficient of variation summarizes how well variation between different genes is
preserved by the generated model expression. This value is usually quite high.
**Gene-wise Coefficient of Variation**:
| Metric | Training Value |
|-------------------------|----------------|
| Mean Absolute Error | 6.58 |
| Pearson Correlation | 0.86 |
| Spearman Correlation | 0.98 |
| R² (R-Squared) | 0.61 |
</details>
<details>
<summary><strong>Differential expression metric</strong></summary>
The differential expression metric provides a summary of the differential expression analysis
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
cell-type.
**Differential expression**:
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
| --- | --- | --- | --- | --- | --- | --- | --- |
| respiratory basal cell | 0.98 | 0.29 | 0.91 | 0.99 | 0.28 | 0.98 | 80113.00 |
| alveolar macrophage | 0.98 | 0.23 | 0.95 | 0.99 | 0.27 | 0.98 | 78816.00 |
| type II pneumocyte | 0.96 | 0.24 | 0.94 | 0.98 | 0.20 | 0.99 | 62405.00 |
| club cell | 0.94 | 0.61 | 0.80 | 0.97 | 0.18 | 0.97 | 36023.00 |
| nasal mucosa goblet cell | 0.97 | 0.66 | 0.81 | 0.98 | 0.21 | 0.98 | 35833.00 |
| ciliated columnar cell of tracheobronchial tree | 0.96 | 0.25 | 0.95 | 0.99 | 0.26 | 0.98 | 35225.00 |
| CD8-positive, alpha-beta T cell | 0.96 | 0.32 | 0.91 | 0.98 | 0.30 | 0.97 | 29074.00 |
| elicited macrophage | 0.96 | 0.46 | 0.86 | 0.98 | 0.30 | 0.97 | 28223.00 |
| capillary endothelial cell | 0.98 | 0.73 | 0.81 | 0.97 | 0.27 | 0.98 | 23205.00 |
| CD4-positive, alpha-beta T cell | 0.95 | 0.49 | 0.84 | 0.96 | 0.30 | 0.97 | 21285.00 |
| classical monocyte | 0.95 | 0.41 | 0.88 | 0.98 | 0.27 | 0.96 | 17695.00 |
| natural killer cell | 0.96 | 0.65 | 0.82 | 0.97 | 0.28 | 0.97 | 16978.00 |
| vein endothelial cell | 0.95 | 0.70 | 0.79 | 0.95 | 0.26 | 0.96 | 12975.00 |
| alveolar type 2 fibroblast cell | 0.92 | 0.65 | 0.83 | 0.97 | 0.27 | 0.97 | 10321.00 |
| CD1c-positive myeloid dendritic cell | 0.92 | 0.67 | 0.68 | 0.96 | 0.33 | 0.96 | 9133.00 |
| non-classical monocyte | 0.93 | 0.75 | 0.79 | 0.96 | 0.32 | 0.97 | 8834.00 |
| type I pneumocyte | 0.95 | 1.31 | 0.67 | 0.88 | 0.18 | 0.95 | 7937.00 |
| pulmonary artery endothelial cell | 0.95 | 1.17 | 0.72 | 0.93 | 0.29 | 0.97 | 7391.00 |
| mast cell | 0.94 | 0.67 | 0.78 | 0.95 | 0.22 | 0.95 | 6623.00 |
| multi-ciliated epithelial cell | 0.90 | 1.40 | 0.74 | 0.94 | 0.30 | 0.97 | 5873.00 |
| alveolar type 1 fibroblast cell | 0.96 | 1.44 | 0.71 | 0.93 | 0.28 | 0.96 | 5182.00 |
| lung macrophage | 0.94 | 1.41 | 0.70 | 0.93 | 0.31 | 0.95 | 4805.00 |
| respiratory hillock cell | 0.92 | 1.31 | 0.77 | 0.95 | 0.28 | 0.96 | 4600.00 |
| endothelial cell of lymphatic vessel | 0.93 | 1.04 | 0.67 | 0.93 | 0.23 | 0.95 | 4595.00 |
| B cell | 0.93 | 1.47 | 0.59 | 0.89 | 0.27 | 0.96 | 4511.00 |
| epithelial cell of lower respiratory tract | 0.94 | 1.07 | 0.63 | 0.90 | 0.15 | 0.95 | 4393.00 |
| lung pericyte | 0.93 | 2.60 | 0.65 | 0.87 | 0.23 | 0.94 | 3032.00 |
| tracheobronchial smooth muscle cell | 0.92 | 1.57 | 0.68 | 0.89 | 0.25 | 0.93 | 2996.00 |
| plasma cell | 0.82 | 1.41 | 0.58 | 0.84 | 0.17 | 0.94 | 1773.00 |
| bronchial goblet cell | 0.93 | 1.45 | 0.75 | 0.93 | 0.19 | 0.93 | 1670.00 |
| bronchus fibroblast of lung | 0.90 | 1.93 | 0.71 | 0.89 | 0.28 | 0.93 | 1573.00 |
| serous secreting cell | 0.89 | 5.09 | 0.58 | 0.70 | 0.15 | 0.98 | 1472.00 |
| epithelial cell of alveolus of lung | 0.94 | 2.33 | 0.56 | 0.84 | 0.21 | 0.91 | 1440.00 |
| tracheobronchial serous cell | 0.80 | 3.41 | 0.57 | 0.70 | 0.11 | 0.96 | 1417.00 |
| acinar cell | 0.88 | 1.97 | 0.69 | 0.91 | 0.22 | 0.93 | 1274.00 |
| tracheobronchial goblet cell | 0.88 | 4.27 | 0.58 | 0.73 | 0.14 | 0.97 | 968.00 |
| myofibroblast cell | 0.80 | 3.86 | 0.61 | 0.82 | 0.31 | 0.92 | 716.00 |
| ionocyte | 0.87 | 3.51 | 0.61 | 0.78 | 0.31 | 0.87 | 561.00 |
| smooth muscle cell | 0.87 | 3.03 | 0.65 | 0.86 | 0.33 | 0.91 | 556.00 |
| plasmacytoid dendritic cell | 0.89 | 4.15 | 0.53 | 0.72 | 0.30 | 0.90 | 552.00 |
| mucus secreting cell | 0.86 | 4.68 | 0.56 | 0.68 | 0.22 | 0.94 | 537.00 |
| T cell | 0.89 | 2.83 | 0.57 | 0.84 | 0.40 | 0.93 | 500.00 |
| stromal cell | 0.82 | 5.60 | 0.57 | 0.70 | 0.24 | 0.91 | 335.00 |
| conventional dendritic cell | 0.73 | 4.19 | 0.52 | 0.73 | 0.37 | 0.90 | 322.00 |
| dendritic cell | 0.75 | 4.16 | 0.55 | 0.75 | 0.35 | 0.85 | 312.00 |
| fibroblast | 0.77 | 3.68 | 0.63 | 0.81 | 0.39 | 0.90 | 276.00 |
| mesothelial cell | 0.78 | 4.12 | 0.57 | 0.72 | 0.39 | 0.87 | 230.00 |
| brush cell of trachebronchial tree | 0.55 | 4.98 | 0.59 | 0.74 | 0.35 | 0.83 | 165.00 |
| lung neuroendocrine cell | 0.74 | 4.34 | 0.57 | 0.71 | 0.39 | 0.86 | 159.00 |
| hematopoietic stem cell | 0.37 | 6.88 | 0.50 | 0.57 | 0.38 | 0.75 | 60.00 |
</details>
# Model Properties
We provide here key parameters used to setup and train the model.
<details>
<summary><strong>Model Parameters</strong></summary>
These provide the settings to setup the original model:
```json
{
"n_hidden": 128,
"n_latent": 30,
"n_layers": 2,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "nb",
"linear_classifier": false,
"encode_covariates": true,
"deeply_inject_covariates": false,
"use_layer_norm": "both",
"use_batch_norm": "none"
}
```
</details>
<details>
<summary><strong>Setup Data Arguments</strong></summary>
Arguments passed to setup_anndata of the original model:
```json
{
"labels_key": "scanvi_label",
"unlabeled_category": "unlabeled",
"layer": null,
"batch_key": "dataset",
"size_factor_key": null,
"categorical_covariate_keys": null,
"continuous_covariate_keys": null,
"use_minified": true
}
```
</details>
<details>
<summary><strong>Data Registry</strong></summary>
Registry elements for AnnData manager:
| Registry Key | scvi-tools Location |
|-------------------|--------------------------------------|
| X | adata.X |
| batch | adata.obs['_scvi_batch'] |
| labels | adata.obs['_scvi_labels'] |
| latent_qzm | adata.obsm['scanvi_latent_qzm'] |
| latent_qzv | adata.obsm['scanvi_latent_qzv'] |
| minify_type | adata.uns['_scvi_adata_minify_type'] |
| observed_lib_size | adata.obs['observed_lib_size'] |
- **Data is Minified**: False
</details>
<details>
<summary><strong>Summary Statistics</strong></summary>
| Summary Stat Key | Value |
|--------------------------|--------|
| n_batch | 14 |
| n_cells | 584944 |
| n_extra_categorical_covs | 0 |
| n_extra_continuous_covs | 0 |
| n_labels | 29 |
| n_latent_qzm | 30 |
| n_latent_qzv | 30 |
| n_vars | 2000 |
</details>
<details>
<summary><strong>Training</strong></summary>
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
sure to provide this field if you want users to be able to access your training data. See the
scvi-tools documentation for details. -->
**Training data url**: Not provided by uploader
If provided by the original uploader, for those interested in understanding or replicating the
training process, the code is available at the link below.
**Training Code URL**: https://github.com/LungCellAtlas/HLCA_reproducibility
</details>
# References
Lisa Sikkema, Ciro Ramírez-Suástegui, Daniel C. Strobl, Tessa E. Gillett, Luke Zappia, Elo Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi, Yuge Ji, Meshal Ansari, Marie-Jeanne Arguel, Leonie Apperloo, Martin Banchero, Christophe Bécavin, Marijn Berg, Evgeny Chichelnitskiy, Mei-i Chung, Antoine Collin, Aurore C. A. Gay, Janine Gote-Schniering, Baharak Hooshiar Kashani, Kemal Inecik, Manu Jain, Theodore S. Kapellos, Tessa M. Kole, Sylvie Leroy, Christoph H. Mayr, Amanda J. Oliver, Michael von Papen, Lance Peter, Chase J. Taylor, Thomas Walzthoeni, Chuan Xu, Linh T. Bui, Carlo De Donno, Leander Dony, Alen Faiz, Minzhe Guo, Austin J. Gutierrez, Lukas Heumos, Ni Huang, Ignacio L. Ibarra, Nathan D. Jackson, Preetish Kadur Lakshminarasimha Murthy, Mohammad Lotfollahi, Tracy Tabib, Carlos Talavera-López, Kyle J. Travaglini, Anna Wilbrey-Clark, Kaylee B. Worlock, Masahiro Yoshida, Lung Biological Network Consortium, Maarten van den Berge, Yohan Bossé, Tushar J. Desai, Oliver Eickelberg, Naftali Kaminski, Mark A. Krasnow, Robert Lafyatis, Marko Z. Nikolic, Joseph E. Powell, Jayaraj Rajagopal, Mauricio Rojas, Orit Rozenblatt-Rosen, Max A. Seibold, Dean Sheppard, Douglas P. Shepherd, Don D. Sin, Wim Timens, Alexander M. Tsankov, Jeffrey Whitsett, Yan Xu, Nicholas E. Banovich, Pascal Barbry, Thu Elizabeth Duong, Christine S. Falk, Kerstin B. Meyer, Jonathan A. Kropski, Dana Pe’er, Herbert B. Schiller, Purushothama Rao Tata, Joachim L. Schultze, Sara A. Teichmann, Alexander V. Misharin, Martijn C. Nawijn, Malte D. Luecken, and Fabian J. Theis. An integrated cell atlas of the lung in health and disease. Nature Medicine, June 2023. doi:10.1038/s41591-023-02327-2.
|