Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: scvi-tools
|
3 |
+
license: cc-by-4.0
|
4 |
+
tags:
|
5 |
+
- biology
|
6 |
+
- genomics
|
7 |
+
- single-cell
|
8 |
+
- model_cls_name:TOTALVI
|
9 |
+
- scvi_version:1.2.0
|
10 |
+
- anndata_version:0.11.1
|
11 |
+
- modality:rna
|
12 |
+
- modality:protein
|
13 |
+
- tissue:thymus
|
14 |
+
- annotated:True
|
15 |
+
---
|
16 |
+
|
17 |
+
|
18 |
+
TotalVI is a variational inference model for single-cell RNA-seq as well as protein data that can
|
19 |
+
learn an underlying latent space, integrate technical batches, impute dropouts,
|
20 |
+
and predict protein expression given gene expression or missing protein data given gene expression
|
21 |
+
and protein data for a subset of proteins.
|
22 |
+
The learned low-dimensional latent representation of the data can be used for visualization and
|
23 |
+
clustering.
|
24 |
+
|
25 |
+
TotalVI takes as input a scRNA-seq gene expression and protein expression matrix with cells and
|
26 |
+
genes.
|
27 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/totalvi.html).
|
28 |
+
|
29 |
+
- See our original manuscript for further details of the model:
|
30 |
+
[TotalVI manuscript](https://www.nature.com/articles/s41592-020-01050-x).
|
31 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
|
32 |
+
how to leverage pre-trained models.
|
33 |
+
|
34 |
+
This model can be used for fine tuning on new data using our Arches framework:
|
35 |
+
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
36 |
+
|
37 |
+
|
38 |
+
# Model Description
|
39 |
+
|
40 |
+
CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell state for each T cell lineage.
|
41 |
+
|
42 |
+
# Metrics
|
43 |
+
|
44 |
+
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
45 |
+
|
46 |
+
<details>
|
47 |
+
<summary><strong>Coefficient of variation</strong></summary>
|
48 |
+
|
49 |
+
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
50 |
+
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
51 |
+
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
52 |
+
space might still be useful for analysis.
|
53 |
+
|
54 |
+
**Cell-wise Coefficient of Variation**:
|
55 |
+
|
56 |
+
Modality: protein
|
57 |
+
|
58 |
+
| Metric | Training Value | Validation Value |
|
59 |
+
|-------------------------|----------------|------------------|
|
60 |
+
| Mean Absolute Error | 0.32 | 0.33 |
|
61 |
+
| Pearson Correlation | 0.52 | 0.51 |
|
62 |
+
| Spearman Correlation | 0.49 | 0.49 |
|
63 |
+
| R² (R-Squared) | -0.01 | -0.01 |
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
68 |
+
preserved by the generated model expression. This value is usually quite high.
|
69 |
+
|
70 |
+
**Gene-wise Coefficient of Variation**:
|
71 |
+
|
72 |
+
Modality: protein
|
73 |
+
|
74 |
+
| Metric | Training Value |
|
75 |
+
|-------------------------|----------------|
|
76 |
+
| Mean Absolute Error | 0.32 |
|
77 |
+
| Pearson Correlation | 0.87 |
|
78 |
+
| Spearman Correlation | 0.95 |
|
79 |
+
| R² (R-Squared) | 0.16 |
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
</details>
|
84 |
+
|
85 |
+
<details>
|
86 |
+
<summary><strong>Differential expression metric</strong></summary>
|
87 |
+
|
88 |
+
The differential expression metric provides a summary of the differential expression analysis
|
89 |
+
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
90 |
+
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
91 |
+
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
92 |
+
cell-type.
|
93 |
+
|
94 |
+
**Differential expression**:
|
95 |
+
|
96 |
+
Modality: protein
|
97 |
+
|
98 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
99 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
100 |
+
| DP (Q2) | 0.91 | 0.09 | 0.99 | 0.98 | 0.50 | 0.99 | 10864.00 |
|
101 |
+
| DP (Sig.) | 0.91 | 0.09 | 0.97 | 0.93 | 0.21 | 0.93 | 9824.00 |
|
102 |
+
| DP (Q1) | 1.00 | 0.08 | 0.99 | 0.98 | 0.61 | 0.98 | 8556.00 |
|
103 |
+
| Mature CD4 | 0.91 | 0.13 | 0.99 | 0.98 | 0.57 | 0.98 | 6525.00 |
|
104 |
+
| Immature CD8 | 0.82 | 0.08 | 0.98 | 0.96 | 0.35 | 0.95 | 5686.00 |
|
105 |
+
| DP (P) | 1.00 | 0.12 | 0.98 | 0.92 | 0.52 | 0.92 | 5593.00 |
|
106 |
+
| Immature CD4 | 1.00 | 0.10 | 0.99 | 0.94 | 0.32 | 0.94 | 5164.00 |
|
107 |
+
| Mature CD8 | 0.91 | 0.13 | 0.99 | 0.97 | 0.40 | 0.96 | 4234.00 |
|
108 |
+
| DN | 0.82 | 0.14 | 0.99 | 0.94 | 0.57 | 0.92 | 2395.00 |
|
109 |
+
| GD T | 0.82 | 0.13 | 0.99 | 0.95 | 0.39 | 0.93 | 2279.00 |
|
110 |
+
| Treg | 0.91 | 0.12 | 0.98 | 0.98 | 0.44 | 0.95 | 1966.00 |
|
111 |
+
| Neg. sel. (2) | 0.91 | 0.10 | 0.99 | 0.97 | 0.25 | 0.90 | 1560.00 |
|
112 |
+
| Dying | 0.82 | 0.13 | 0.93 | 0.91 | 0.52 | 0.93 | 1552.00 |
|
113 |
+
| Neg. sel. (1) | 0.82 | 0.13 | 0.97 | 0.95 | 0.27 | 0.87 | 1206.00 |
|
114 |
+
| Mature cycling | 0.73 | 0.17 | 0.97 | 0.94 | 0.27 | 0.89 | 992.00 |
|
115 |
+
| Interferon sig. | 0.91 | 0.09 | 0.94 | 0.78 | 0.15 | 0.91 | 984.00 |
|
116 |
+
| NKT | 0.82 | 0.18 | 0.95 | 0.95 | 0.56 | 0.93 | 928.00 |
|
117 |
+
| Myeloid | 1.00 | 0.18 | 0.97 | 0.93 | 0.66 | 0.97 | 908.00 |
|
118 |
+
| Doublet | 0.55 | 0.35 | 0.60 | 0.46 | 0.81 | 0.99 | 677.00 |
|
119 |
+
| B | 0.73 | 0.60 | 0.93 | 0.81 | 0.40 | 0.78 | 106.00 |
|
120 |
+
| Erythrocyte | 0.55 | 0.74 | 0.79 | 0.69 | 0.50 | 0.59 | 43.00 |
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
</details>
|
125 |
+
|
126 |
+
# Model Properties
|
127 |
+
|
128 |
+
We provide here key parameters used to setup and train the model.
|
129 |
+
|
130 |
+
<details>
|
131 |
+
<summary><strong>Model Parameters</strong></summary>
|
132 |
+
|
133 |
+
These provide the settings to setup the original model:
|
134 |
+
```json
|
135 |
+
{
|
136 |
+
"n_latent": 20,
|
137 |
+
"gene_dispersion": "gene",
|
138 |
+
"protein_dispersion": "protein",
|
139 |
+
"gene_likelihood": "nb",
|
140 |
+
"latent_distribution": "normal",
|
141 |
+
"empirical_protein_background_prior": null,
|
142 |
+
"override_missing_proteins": false
|
143 |
+
}
|
144 |
+
```
|
145 |
+
|
146 |
+
</details>
|
147 |
+
|
148 |
+
<details>
|
149 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
150 |
+
|
151 |
+
Arguments passed to setup_anndata of the original model:
|
152 |
+
```json
|
153 |
+
{
|
154 |
+
"rna_layer": "counts",
|
155 |
+
"protein_layer": null,
|
156 |
+
"batch_key": "sample_id",
|
157 |
+
"size_factor_key": null,
|
158 |
+
"categorical_covariate_keys": null,
|
159 |
+
"continuous_covariate_keys": null,
|
160 |
+
"modalities": {
|
161 |
+
"rna_layer": "rna",
|
162 |
+
"protein_layer": "protein",
|
163 |
+
"batch_key": "rna"
|
164 |
+
}
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
</details>
|
169 |
+
|
170 |
+
<details>
|
171 |
+
<summary><strong>Data Registry</strong></summary>
|
172 |
+
|
173 |
+
Registry elements for AnnData manager:
|
174 |
+
|[1m [0m[1m Registry Key [0m[1m [0m|[1m [0m[1m scvi-tools Location [0m[1m [0m|
|
175 |
+
|-------------------|--------------------------------------|
|
176 |
+
|[94m [0m[94m X [0m[94m [0m|[35m [0m[35m adata.mod['rna'].layers['counts'] [0m[35m [0m|
|
177 |
+
|[94m [0m[94m batch [0m[94m [0m|[35m [0m[35madata.mod['rna'].obs['_scvi_batch'] [0m[35m [0m|
|
178 |
+
|[94m [0m[94m labels [0m[94m [0m|[35m [0m[35m adata.obs['_scvi_labels'] [0m[35m [0m|
|
179 |
+
|[94m [0m[94m latent_qzm [0m[94m [0m|[35m [0m[35m adata.obsm['totalvi_latent_qzm'] [0m[35m [0m|
|
180 |
+
|[94m [0m[94m latent_qzv [0m[94m [0m|[35m [0m[35m adata.obsm['totalvi_latent_qzv'] [0m[35m [0m|
|
181 |
+
|[94m [0m[94m minify_type [0m[94m [0m|[35m [0m[35madata.uns['_scvi_adata_minify_type'][0m[35m [0m|
|
182 |
+
|[94m [0m[94mobserved_lib_size[0m[94m [0m|[35m [0m[35m adata.obs['observed_lib_size'] [0m[35m [0m|
|
183 |
+
|[94m [0m[94m proteins [0m[94m [0m|[35m [0m[35m adata.mod['protein'].X [0m[35m [0m|
|
184 |
+
|
185 |
+
- **Data is Minified**: False
|
186 |
+
|
187 |
+
</details>
|
188 |
+
|
189 |
+
<details>
|
190 |
+
<summary><strong>Summary Statistics</strong></summary>
|
191 |
+
|
192 |
+
|[1m [0m[1m Summary Stat Key [0m[1m [0m|[1m [0m[1mValue[0m[1m [0m|
|
193 |
+
|--------------------------|-------|
|
194 |
+
|[94m [0m[94m n_batch [0m[94m [0m|[35m [0m[35m 17 [0m[35m [0m|
|
195 |
+
|[94m [0m[94m n_cells [0m[94m [0m|[35m [0m[35m72042[0m[35m [0m|
|
196 |
+
|[94m [0m[94mn_extra_categorical_covs[0m[94m [0m|[35m [0m[35m 0 [0m[35m [0m|
|
197 |
+
|[94m [0m[94mn_extra_continuous_covs [0m[94m [0m|[35m [0m[35m 0 [0m[35m [0m|
|
198 |
+
|[94m [0m[94m n_labels [0m[94m [0m|[35m [0m[35m 1 [0m[35m [0m|
|
199 |
+
|[94m [0m[94m n_latent_qzm [0m[94m [0m|[35m [0m[35m 20 [0m[35m [0m|
|
200 |
+
|[94m [0m[94m n_latent_qzv [0m[94m [0m|[35m [0m[35m 20 [0m[35m [0m|
|
201 |
+
|[94m [0m[94m n_proteins [0m[94m [0m|[35m [0m[35m 111 [0m[35m [0m|
|
202 |
+
|[94m [0m[94m n_vars [0m[94m [0m|[35m [0m[35m4000 [0m[35m [0m|
|
203 |
+
|
204 |
+
</details>
|
205 |
+
|
206 |
+
|
207 |
+
<details>
|
208 |
+
<summary><strong>Training</strong></summary>
|
209 |
+
|
210 |
+
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
211 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
212 |
+
scvi-tools documentation for details. -->
|
213 |
+
**Training data url**: Not provided by uploader
|
214 |
+
|
215 |
+
If provided by the original uploader, for those interested in understanding or replicating the
|
216 |
+
training process, the code is available at the link below.
|
217 |
+
|
218 |
+
**Training Code URL**: https://github.com/YosefLab/Thymus_CITE-seq/blob/main/totalVI_AllData/totalVI_thymus111.ipynb
|
219 |
+
|
220 |
+
</details>
|
221 |
+
|
222 |
+
|
223 |
+
# References
|
224 |
+
|
225 |
+
Steier, Z., Aylard, D.A., McIntyre, L.L. et al. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ T cell and CD8+ T cell lineage commitment. Nat Immunol 24, 1579–1590 (2023). https://doi.org/10.1038/s41590-023-01584-0.
|