canergen commited on
Commit
ae71f21
1 Parent(s): eb8cbb2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +135 -35
README.md CHANGED
@@ -1,27 +1,113 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Bone_Marrow
13
  - annotated:True
14
  ---
15
 
16
- # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
19
 
20
- # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
23
 
24
- **model_init_params**:
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -37,7 +123,12 @@ Many model properties are in the model tags. Some more are listed below.
37
  }
38
  ```
39
 
40
- **model_setup_anndata_args**:
 
 
 
 
 
41
  ```json
42
  {
43
  "layer": null,
@@ -49,7 +140,29 @@ Many model properties are in the model tags. Some more are listed below.
49
  }
50
  ```
51
 
52
- **model_summary_stats**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  | Summary Stat Key | Value |
54
  |--------------------------|-------|
55
  | n_batch | 7 |
@@ -59,40 +172,27 @@ Many model properties are in the model tags. Some more are listed below.
59
  | n_labels | 14 |
60
  | n_latent_qzm | 20 |
61
  | n_latent_qzv | 20 |
62
- | n_vars | 4000 |
63
-
64
- **model_data_registry**:
65
- | Registry Key | scvi-tools Location |
66
- |-------------------|--------------------------------------|
67
- | X | adata.X |
68
- | batch | adata.obs['_scvi_batch'] |
69
- | labels | adata.obs['_scvi_labels'] |
70
- | latent_qzm | adata.obsm['_scvi_latent_qzm'] |
71
- | latent_qzv | adata.obsm['_scvi_latent_qzv'] |
72
- | minify_type | adata.uns['_scvi_adata_minify_type'] |
73
- | observed_lib_size | adata.obs['_scvi_observed_lib_size'] |
74
-
75
- **model_parent_module**: scvi.model
76
 
77
- **data_is_minified**: True
78
 
79
- # Training data
80
 
81
- This is an optional link to where the training data is stored if it is too large
82
- to host on the huggingface Model hub.
83
 
84
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
85
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
86
- documentation for details. -->
 
87
 
88
- Training data url: https://zenodo.org/records/7608635/files/Bone_Marrow_training_data.h5ad
 
89
 
90
- # Training code
91
 
92
- This is an optional link to the code used to train the model.
93
 
94
- Training code url: N/A
95
 
96
  # References
97
 
98
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
16
+
17
+ ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space, integrate technical batches and impute dropouts.
19
+ The learned low-dimensional latent representation of the data can be used for visualization and
20
+ clustering.
21
+
22
+ scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
23
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
24
+
25
+ - See our original manuscript for further details of the model:
26
+ [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
27
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
28
+ to leverage pre-trained models.
29
+
30
+ This model can be used for fine tuning on new data using our Arches framework:
31
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
32
+
33
+
34
+ # Model Description
35
 
36
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
37
 
38
+ # Metrics
39
+
40
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
+
42
+ <details>
43
+ <summary><strong>Coefficient of variation</strong></summary>
44
+
45
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
46
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
48
+ space might still be useful for analysis.
49
+
50
+ **Cell-wise Coefficient of Variation**:
51
+
52
+ | Metric | Training Value | Validation Value |
53
+ |-------------------------|----------------|------------------|
54
+ | Mean Absolute Error | 2.39 | 2.45 |
55
+ | Pearson Correlation | 0.84 | 0.81 |
56
+ | Spearman Correlation | 0.86 | 0.84 |
57
+ | R² (R-Squared) | 0.52 | 0.49 |
58
+
59
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
60
+ preserved by the generated model expression. This value is usually quite high.
61
+
62
+ **Gene-wise Coefficient of Variation**:
63
+
64
+ | Metric | Training Value |
65
+ |-------------------------|----------------|
66
+ | Mean Absolute Error | 13.48 |
67
+ | Pearson Correlation | 0.59 |
68
+ | Spearman Correlation | 0.66 |
69
+ | R² (R-Squared) | -1.49 |
70
+
71
+ </details>
72
+
73
+ <details>
74
+ <summary><strong>Differential expression metric</strong></summary>
75
+
76
+ The differential expression metric provides a summary of the differential expression analysis
77
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
78
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
79
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
80
+ cell-type.
81
+
82
+ **Differential expression**:
83
+
84
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
85
+ | --- | --- | --- | --- | --- | --- | --- | --- |
86
+ | neutrophil | 0.94 | 2.25 | 0.64 | 0.87 | 0.19 | 0.84 | 2911.00 |
87
+ | CD4-positive, alpha-beta T cell | 0.94 | 1.96 | 0.62 | 0.90 | 0.34 | 0.79 | 2025.00 |
88
+ | monocyte | 0.87 | 1.79 | 0.64 | 0.88 | 0.40 | 0.77 | 1389.00 |
89
+ | CD8-positive, alpha-beta T cell | 0.86 | 2.95 | 0.58 | 0.85 | 0.32 | 0.74 | 1147.00 |
90
+ | granulocyte | 0.79 | 2.38 | 0.64 | 0.89 | 0.46 | 0.83 | 853.00 |
91
+ | plasma cell | 0.75 | 2.35 | 0.71 | 0.91 | 0.19 | 0.85 | 825.00 |
92
+ | erythroid progenitor cell | 0.64 | 2.46 | 0.67 | 0.91 | 0.49 | 0.89 | 757.00 |
93
+ | mature NK T cell | 0.78 | 3.77 | 0.58 | 0.76 | 0.33 | 0.69 | 678.00 |
94
+ | hematopoietic stem cell | 0.89 | 2.27 | 0.65 | 0.87 | 0.53 | 0.85 | 617.00 |
95
+ | memory B cell | 0.87 | 4.54 | 0.56 | 0.68 | 0.33 | 0.70 | 310.00 |
96
+ | common myeloid progenitor | 0.72 | 2.72 | 0.69 | 0.89 | 0.54 | 0.88 | 287.00 |
97
+ | macrophage | 0.86 | 4.43 | 0.63 | 0.70 | 0.34 | 0.78 | 265.00 |
98
+ | naive B cell | 0.88 | 5.59 | 0.57 | 0.66 | 0.27 | 0.66 | 142.00 |
99
+ | erythrocyte | 0.90 | 5.34 | 0.53 | 0.47 | 0.33 | 0.90 | 87.00 |
100
+
101
+ </details>
102
+
103
+ # Model Properties
104
 
105
+ We provide here key parameters used to setup and train the model.
106
 
107
+ <details>
108
+ <summary><strong>Model Parameters</strong></summary>
109
+
110
+ These provide the settings to setup the original model:
111
  ```json
112
  {
113
  "n_hidden": 128,
 
123
  }
124
  ```
125
 
126
+ </details>
127
+
128
+ <details>
129
+ <summary><strong>Setup Data Arguments</strong></summary>
130
+
131
+ Arguments passed to setup_anndata of the original model:
132
  ```json
133
  {
134
  "layer": null,
 
140
  }
141
  ```
142
 
143
+ </details>
144
+
145
+ <details>
146
+ <summary><strong>Data Registry</strong></summary>
147
+
148
+ Registry elements for AnnData manager:
149
+ | Registry Key | scvi-tools Location |
150
+ |-------------------|--------------------------------------|
151
+ | X | adata.X |
152
+ | batch | adata.obs['_scvi_batch'] |
153
+ | labels | adata.obs['_scvi_labels'] |
154
+ | latent_qzm | adata.obsm['scvi_latent_qzm'] |
155
+ | latent_qzv | adata.obsm['scvi_latent_qzv'] |
156
+ | minify_type | adata.uns['_scvi_adata_minify_type'] |
157
+ | observed_lib_size | adata.obs['observed_lib_size'] |
158
+
159
+ - **Data is Minified**: False
160
+
161
+ </details>
162
+
163
+ <details>
164
+ <summary><strong>Summary Statistics</strong></summary>
165
+
166
  | Summary Stat Key | Value |
167
  |--------------------------|-------|
168
  | n_batch | 7 |
 
172
  | n_labels | 14 |
173
  | n_latent_qzm | 20 |
174
  | n_latent_qzv | 20 |
175
+ | n_vars | 3000 |
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
177
+ </details>
178
 
 
179
 
180
+ <details>
181
+ <summary><strong>Training</strong></summary>
182
 
183
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
184
+ sure to provide this field if you want users to be able to access your training data. See the
185
+ scvi-tools documentation for details. -->
186
+ **Training data url**: Not provided by uploader
187
 
188
+ If provided by the original uploader, for those interested in understanding or replicating the
189
+ training process, the code is available at the link below.
190
 
191
+ **Training Code URL**: Not provided by uploader
192
 
193
+ </details>
194
 
 
195
 
196
  # References
197
 
198
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896