Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,27 +1,111 @@
|
|
1 |
---
|
2 |
-
license: cc-by-4.0
|
3 |
library_name: scvi-tools
|
|
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:CondSCVI
|
9 |
-
- scvi_version:1.
|
10 |
-
- anndata_version:0.
|
11 |
- modality:rna
|
12 |
-
- tissue:
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
```json
|
26 |
{
|
27 |
"n_hidden": 128,
|
@@ -32,48 +116,63 @@ Many model properties are in the model tags. Some more are listed below.
|
|
32 |
}
|
33 |
```
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
```json
|
37 |
{
|
38 |
"labels_key": "cell_ontology_class",
|
39 |
-
"layer": null
|
|
|
40 |
}
|
41 |
```
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
| n_labels | 12 |
|
48 |
-
| n_vars | 4000 |
|
49 |
|
50 |
-
|
51 |
| Registry Key | scvi-tools Location |
|
52 |
|--------------|---------------------------|
|
53 |
| X | adata.X |
|
54 |
| labels | adata.obs['_scvi_labels'] |
|
55 |
|
56 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
# Training data
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
66 |
-
sure to provide this field if you want users to be able to access your training data. See the
|
67 |
-
documentation for details. -->
|
|
|
68 |
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
|
75 |
-
Training code url: N/A
|
76 |
|
77 |
# References
|
78 |
|
79 |
-
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|
|
|
1 |
---
|
|
|
2 |
library_name: scvi-tools
|
3 |
+
license: cc-by-4.0
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:CondSCVI
|
9 |
+
- scvi_version:1.2.0
|
10 |
+
- anndata_version:0.11.1
|
11 |
- modality:rna
|
12 |
+
- tissue:various
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
16 |
+
|
17 |
+
CondSCVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
|
18 |
+
latent space. The predictions of the model are meant to be afterward
|
19 |
+
used for deconvolution of a second spatial transcriptomics dataset in DestVI. DestVI predicts the
|
20 |
+
cell-type proportions as well as cell type-specific activation state
|
21 |
+
in the spatial data.
|
22 |
+
|
23 |
+
CondSCVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
|
24 |
+
cell-type annotation for all cells.
|
25 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html)
|
26 |
+
for DestVI including a description of CondSCVI.
|
27 |
+
|
28 |
+
- See our original manuscript for further details of the model:
|
29 |
+
[DestVI manuscript](https://www.nature.com/articles/s41587-022-01272-8).
|
30 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
|
31 |
+
how to leverage pre-trained models.
|
32 |
+
|
33 |
+
|
34 |
+
# Model Description
|
35 |
|
36 |
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
|
37 |
|
38 |
+
# Metrics
|
39 |
+
|
40 |
+
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
41 |
+
|
42 |
+
<details>
|
43 |
+
<summary><strong>Coefficient of variation</strong></summary>
|
44 |
+
|
45 |
+
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
46 |
+
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
47 |
+
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
48 |
+
space might still be useful for analysis.
|
49 |
+
|
50 |
+
**Cell-wise Coefficient of Variation**:
|
51 |
+
|
52 |
+
| Metric | Training Value | Validation Value |
|
53 |
+
|-------------------------|----------------|------------------|
|
54 |
+
| Mean Absolute Error | 4.33 | 4.63 |
|
55 |
+
| Pearson Correlation | 0.00 | -0.05 |
|
56 |
+
| Spearman Correlation | 0.09 | 0.07 |
|
57 |
+
| R² (R-Squared) | -147.02 | -183.16 |
|
58 |
+
|
59 |
+
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
60 |
+
preserved by the generated model expression. This value is usually quite high.
|
61 |
+
|
62 |
+
**Gene-wise Coefficient of Variation**:
|
63 |
+
|
64 |
+
| Metric | Training Value |
|
65 |
+
|-------------------------|----------------|
|
66 |
+
| Mean Absolute Error | 18.04 |
|
67 |
+
| Pearson Correlation | 0.15 |
|
68 |
+
| Spearman Correlation | 0.14 |
|
69 |
+
| R² (R-Squared) | -15651.21 |
|
70 |
+
|
71 |
+
</details>
|
72 |
+
|
73 |
+
<details>
|
74 |
+
<summary><strong>Differential expression metric</strong></summary>
|
75 |
+
|
76 |
+
The differential expression metric provides a summary of the differential expression analysis
|
77 |
+
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
78 |
+
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
79 |
+
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
80 |
+
cell-type.
|
81 |
+
|
82 |
+
**Differential expression**:
|
83 |
|
84 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
85 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
86 |
+
| macrophage | 0.06 | 2.48 | 0.01 | 0.04 | 0.50 | 0.80 | 1379.00 |
|
87 |
+
| monocyte | 0.04 | 3.31 | 0.02 | 0.09 | 0.50 | 0.76 | 605.00 |
|
88 |
+
| endothelial cell of hepatic sinusoid | 0.03 | 3.50 | 0.06 | 0.04 | 0.49 | 0.69 | 341.00 |
|
89 |
+
| mature NK T cell | 0.08 | 5.02 | 0.00 | 0.01 | 0.52 | 0.78 | 231.00 |
|
90 |
+
| neutrophil | 0.02 | 6.40 | -0.01 | 0.04 | 0.61 | 0.75 | 81.00 |
|
91 |
+
| fibroblast | 0.02 | 5.19 | -0.04 | -0.04 | 0.49 | 0.63 | 70.00 |
|
92 |
+
| hepatocyte | 0.16 | 7.69 | 0.01 | 0.01 | 0.52 | 0.81 | 67.00 |
|
93 |
+
| liver dendritic cell | 0.08 | 8.56 | 0.10 | 0.03 | 0.48 | 0.51 | 34.00 |
|
94 |
+
| T cell | 0.03 | 10.88 | -0.05 | -0.03 | 0.50 | 0.55 | 20.00 |
|
95 |
+
| plasma cell | 0.03 | 11.84 | 0.02 | -0.02 | 0.48 | 0.63 | 19.00 |
|
96 |
+
| intrahepatic cholangiocyte | 0.05 | 9.51 | -0.00 | 0.00 | 0.50 | 0.56 | 11.00 |
|
97 |
+
| erythrocyte | 0.07 | 24.40 | 0.01 | -0.01 | 0.43 | 0.87 | 2.00 |
|
98 |
|
99 |
+
</details>
|
100 |
+
|
101 |
+
# Model Properties
|
102 |
+
|
103 |
+
We provide here key parameters used to setup and train the model.
|
104 |
+
|
105 |
+
<details>
|
106 |
+
<summary><strong>Model Parameters</strong></summary>
|
107 |
+
|
108 |
+
These provide the settings to setup the original model:
|
109 |
```json
|
110 |
{
|
111 |
"n_hidden": 128,
|
|
|
116 |
}
|
117 |
```
|
118 |
|
119 |
+
</details>
|
120 |
+
|
121 |
+
<details>
|
122 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
123 |
+
|
124 |
+
Arguments passed to setup_anndata of the original model:
|
125 |
```json
|
126 |
{
|
127 |
"labels_key": "cell_ontology_class",
|
128 |
+
"layer": null,
|
129 |
+
"batch_key": null
|
130 |
}
|
131 |
```
|
132 |
|
133 |
+
</details>
|
134 |
+
|
135 |
+
<details>
|
136 |
+
<summary><strong>Data Registry</strong></summary>
|
|
|
|
|
137 |
|
138 |
+
Registry elements for AnnData manager:
|
139 |
| Registry Key | scvi-tools Location |
|
140 |
|--------------|---------------------------|
|
141 |
| X | adata.X |
|
142 |
| labels | adata.obs['_scvi_labels'] |
|
143 |
|
144 |
+
- **Data is Minified**: False
|
145 |
+
|
146 |
+
</details>
|
147 |
+
|
148 |
+
<details>
|
149 |
+
<summary><strong>Summary Statistics</strong></summary>
|
150 |
+
|
151 |
+
| Summary Stat Key | Value |
|
152 |
+
|------------------|-------|
|
153 |
+
| n_cells | 2860 |
|
154 |
+
| n_labels | 12 |
|
155 |
+
| n_vars | 3000 |
|
156 |
|
157 |
+
</details>
|
158 |
|
|
|
159 |
|
160 |
+
<details>
|
161 |
+
<summary><strong>Training</strong></summary>
|
162 |
|
163 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
164 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
165 |
+
scvi-tools documentation for details. -->
|
166 |
+
**Training data url**: Not provided by uploader
|
167 |
|
168 |
+
If provided by the original uploader, for those interested in understanding or replicating the
|
169 |
+
training process, the code is available at the link below.
|
170 |
|
171 |
+
**Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
|
172 |
|
173 |
+
</details>
|
174 |
|
|
|
175 |
|
176 |
# References
|
177 |
|
178 |
+
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|