canergen commited on
Commit
3fb52bd
1 Parent(s): 6731b09

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +153 -30
README.md CHANGED
@@ -1,27 +1,135 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:CondSCVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Lung
13
  - annotated:True
14
  ---
15
 
16
- # Description
17
 
18
- Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
 
 
 
 
19
 
20
- # Model properties
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
 
 
 
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -32,48 +140,63 @@ Many model properties are in the model tags. Some more are listed below.
32
  }
33
  ```
34
 
35
- **model_setup_anndata_args**:
 
 
 
 
 
36
  ```json
37
  {
38
  "labels_key": "cell_ontology_class",
39
- "layer": null
 
40
  }
41
  ```
42
 
43
- **model_summary_stats**:
44
- | Summary Stat Key | Value |
45
- |------------------|-------|
46
- | n_cells | 35672 |
47
- | n_labels | 36 |
48
- | n_vars | 4000 |
49
 
50
- **model_data_registry**:
51
  | Registry Key | scvi-tools Location |
52
  |--------------|---------------------------|
53
  | X | adata.X |
54
  | labels | adata.obs['_scvi_labels'] |
55
 
56
- **model_parent_module**: scvi.model
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- **data_is_minified**: False
59
 
60
- # Training data
61
 
62
- This is an optional link to where the training data is stored if it is too large
63
- to host on the huggingface Model hub.
64
 
65
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
66
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
67
- documentation for details. -->
 
68
 
69
- Training data url: https://zenodo.org/records/7608635/files/Lung_training_data.h5ad
 
70
 
71
- # Training code
72
 
73
- This is an optional link to the code used to train the model.
74
 
75
- Training code url: N/A
76
 
77
  # References
78
 
79
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:CondSCVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
 
16
 
17
+ CondSCVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space. The predictions of the model are meant to be afterward
19
+ used for deconvolution of a second spatial transcriptomics dataset in DestVI. DestVI predicts the
20
+ cell-type proportions as well as cell type-specific activation state
21
+ in the spatial data.
22
 
23
+ CondSCVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
24
+ cell-type annotation for all cells.
25
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html)
26
+ for DestVI including a description of CondSCVI.
27
 
28
+ - See our original manuscript for further details of the model:
29
+ [DestVI manuscript](https://www.nature.com/articles/s41587-022-01272-8).
30
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
31
+ how to leverage pre-trained models.
32
 
33
+
34
+ # Model Description
35
+
36
+ Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
37
+
38
+ # Metrics
39
+
40
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
+
42
+ <details>
43
+ <summary><strong>Coefficient of variation</strong></summary>
44
+
45
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
46
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
48
+ space might still be useful for analysis.
49
+
50
+ **Cell-wise Coefficient of Variation**:
51
+
52
+ | Metric | Training Value | Validation Value |
53
+ |-------------------------|----------------|------------------|
54
+ | Mean Absolute Error | 3.26 | 3.25 |
55
+ | Pearson Correlation | 0.50 | 0.47 |
56
+ | Spearman Correlation | 0.39 | 0.37 |
57
+ | R² (R-Squared) | -1.55 | -1.59 |
58
+
59
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
60
+ preserved by the generated model expression. This value is usually quite high.
61
+
62
+ **Gene-wise Coefficient of Variation**:
63
+
64
+ | Metric | Training Value |
65
+ |-------------------------|----------------|
66
+ | Mean Absolute Error | 24.46 |
67
+ | Pearson Correlation | 0.74 |
68
+ | Spearman Correlation | 0.84 |
69
+ | R² (R-Squared) | -0.17 |
70
+
71
+ </details>
72
+
73
+ <details>
74
+ <summary><strong>Differential expression metric</strong></summary>
75
+
76
+ The differential expression metric provides a summary of the differential expression analysis
77
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
78
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
79
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
80
+ cell-type.
81
+
82
+ **Differential expression**:
83
+
84
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
85
+ | --- | --- | --- | --- | --- | --- | --- | --- |
86
+ | macrophage | 0.91 | 1.93 | 0.64 | 0.86 | 0.29 | 0.93 | 12160.00 |
87
+ | type II pneumocyte | 0.94 | 1.50 | 0.59 | 0.86 | 0.36 | 0.88 | 9146.00 |
88
+ | basal cell | 0.75 | 2.16 | 0.49 | 0.69 | 0.44 | 0.81 | 2188.00 |
89
+ | capillary endothelial cell | 0.90 | 3.37 | 0.53 | 0.66 | 0.30 | 0.80 | 1534.00 |
90
+ | classical monocyte | 0.85 | 3.70 | 0.56 | 0.67 | 0.26 | 0.82 | 1487.00 |
91
+ | club cell | 0.85 | 3.26 | 0.57 | 0.61 | 0.33 | 0.79 | 1038.00 |
92
+ | non-classical monocyte | 0.76 | 3.52 | 0.62 | 0.67 | 0.35 | 0.84 | 1005.00 |
93
+ | respiratory goblet cell | 0.92 | 2.81 | 0.62 | 0.69 | 0.38 | 0.82 | 762.00 |
94
+ | basophil | 0.76 | 4.22 | 0.57 | 0.58 | 0.31 | 0.86 | 686.00 |
95
+ | lung ciliated cell | 0.76 | 3.54 | 0.56 | 0.64 | 0.48 | 0.86 | 602.00 |
96
+ | CD8-positive, alpha-beta T cell | 0.76 | 4.57 | 0.53 | 0.57 | 0.34 | 0.84 | 552.00 |
97
+ | CD4-positive, alpha-beta T cell | 0.83 | 4.67 | 0.53 | 0.54 | 0.32 | 0.84 | 543.00 |
98
+ | vein endothelial cell | 0.82 | 4.14 | 0.55 | 0.60 | 0.39 | 0.79 | 508.00 |
99
+ | lung microvascular endothelial cell | 0.74 | 3.91 | 0.63 | 0.66 | 0.36 | 0.86 | 485.00 |
100
+ | adventitial cell | 0.83 | 4.58 | 0.59 | 0.71 | 0.41 | 0.82 | 373.00 |
101
+ | fibroblast | 0.87 | 4.90 | 0.48 | 0.53 | 0.39 | 0.78 | 336.00 |
102
+ | dendritic cell | 0.85 | 4.93 | 0.54 | 0.60 | 0.37 | 0.83 | 316.00 |
103
+ | intermediate monocyte | 0.72 | 4.28 | 0.62 | 0.62 | 0.37 | 0.85 | 252.00 |
104
+ | pericyte | 0.84 | 5.16 | 0.53 | 0.50 | 0.41 | 0.80 | 213.00 |
105
+ | type I pneumocyte | 0.79 | 4.07 | 0.62 | 0.63 | 0.37 | 0.79 | 211.00 |
106
+ | endothelial cell of artery | 0.79 | 5.29 | 0.53 | 0.55 | 0.40 | 0.79 | 187.00 |
107
+ | neutrophil | 0.86 | 5.01 | 0.55 | 0.50 | 0.37 | 0.90 | 174.00 |
108
+ | plasma cell | 0.68 | 5.92 | 0.44 | 0.39 | 0.42 | 0.89 | 134.00 |
109
+ | effector CD4-positive, alpha-beta T cell | 0.71 | 4.96 | 0.56 | 0.53 | 0.35 | 0.81 | 132.00 |
110
+ | mature NK T cell | 0.66 | 5.49 | 0.51 | 0.49 | 0.42 | 0.81 | 132.00 |
111
+ | B cell | 0.57 | 5.68 | 0.50 | 0.44 | 0.39 | 0.78 | 87.00 |
112
+ | bronchial smooth muscle cell | 0.85 | 5.21 | 0.56 | 0.53 | 0.39 | 0.79 | 81.00 |
113
+ | effector CD8-positive, alpha-beta T cell | 0.67 | 5.41 | 0.52 | 0.48 | 0.42 | 0.84 | 80.00 |
114
+ | vascular associated smooth muscle cell | 0.79 | 4.94 | 0.58 | 0.54 | 0.41 | 0.80 | 80.00 |
115
+ | endothelial cell of lymphatic vessel | 0.52 | 6.18 | 0.47 | 0.42 | 0.40 | 0.76 | 47.00 |
116
+ | blood vessel endothelial cell | 0.59 | 5.09 | 0.58 | 0.55 | 0.43 | 0.82 | 47.00 |
117
+ | smooth muscle cell | 0.59 | 4.63 | 0.61 | 0.57 | 0.35 | 0.80 | 25.00 |
118
+ | pulmonary ionocyte | 0.20 | 6.93 | 0.39 | 0.30 | 0.40 | 0.73 | 19.00 |
119
+ | plasmacytoid dendritic cell | 0.36 | 5.80 | 0.43 | 0.43 | 0.37 | 0.84 | 18.00 |
120
+ | mesothelial cell | 0.41 | 6.36 | 0.47 | 0.37 | 0.40 | 0.74 | 17.00 |
121
+ | serous cell of epithelium of bronchus | 0.33 | 5.95 | 0.47 | 0.37 | 0.42 | 0.80 | 15.00 |
122
+
123
+ </details>
124
+
125
+ # Model Properties
126
+
127
+ We provide here key parameters used to setup and train the model.
128
+
129
+ <details>
130
+ <summary><strong>Model Parameters</strong></summary>
131
+
132
+ These provide the settings to setup the original model:
133
  ```json
134
  {
135
  "n_hidden": 128,
 
140
  }
141
  ```
142
 
143
+ </details>
144
+
145
+ <details>
146
+ <summary><strong>Setup Data Arguments</strong></summary>
147
+
148
+ Arguments passed to setup_anndata of the original model:
149
  ```json
150
  {
151
  "labels_key": "cell_ontology_class",
152
+ "layer": null,
153
+ "batch_key": null
154
  }
155
  ```
156
 
157
+ </details>
158
+
159
+ <details>
160
+ <summary><strong>Data Registry</strong></summary>
 
 
161
 
162
+ Registry elements for AnnData manager:
163
  | Registry Key | scvi-tools Location |
164
  |--------------|---------------------------|
165
  | X | adata.X |
166
  | labels | adata.obs['_scvi_labels'] |
167
 
168
+ - **Data is Minified**: False
169
+
170
+ </details>
171
+
172
+ <details>
173
+ <summary><strong>Summary Statistics</strong></summary>
174
+
175
+ | Summary Stat Key | Value |
176
+ |------------------|-------|
177
+ | n_cells | 35672 |
178
+ | n_labels | 36 |
179
+ | n_vars | 3000 |
180
 
181
+ </details>
182
 
 
183
 
184
+ <details>
185
+ <summary><strong>Training</strong></summary>
186
 
187
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
188
+ sure to provide this field if you want users to be able to access your training data. See the
189
+ scvi-tools documentation for details. -->
190
+ **Training data url**: Not provided by uploader
191
 
192
+ If provided by the original uploader, for those interested in understanding or replicating the
193
+ training process, the code is available at the link below.
194
 
195
+ **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
196
 
197
+ </details>
198
 
 
199
 
200
  # References
201
 
202
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896