---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:CondSCVI
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- tissue:various
- annotated:True
---
CondSCVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
latent space. The predictions of the model are meant to be afterward
used for deconvolution of a second spatial transcriptomics dataset in DestVI. DestVI predicts the
cell-type proportions as well as cell type-specific activation state
in the spatial data.
CondSCVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
cell-type annotation for all cells.
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html)
for DestVI including a description of CondSCVI.
- See our original manuscript for further details of the model:
[DestVI manuscript](https://www.nature.com/articles/s41587-022-01272-8).
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
how to leverage pre-trained models.
# Model Description
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
# Metrics
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
Coefficient of variation
The cell-wise coefficient of variation summarizes how well variation between different cells is
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
, we would recommend not to use generated data for downstream analysis, while the generated latent
space might still be useful for analysis.
**Cell-wise Coefficient of Variation**:
| Metric | Training Value | Validation Value |
|-------------------------|----------------|------------------|
| Mean Absolute Error | 3.27 | 3.24 |
| Pearson Correlation | 0.49 | 0.49 |
| Spearman Correlation | 0.39 | 0.38 |
| R² (R-Squared) | -1.58 | -1.55 |
The gene-wise coefficient of variation summarizes how well variation between different genes is
preserved by the generated model expression. This value is usually quite high.
**Gene-wise Coefficient of Variation**:
| Metric | Training Value |
|-------------------------|----------------|
| Mean Absolute Error | 24.57 |
| Pearson Correlation | 0.73 |
| Spearman Correlation | 0.84 |
| R² (R-Squared) | -0.17 |
Differential expression metric
The differential expression metric provides a summary of the differential expression analysis
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
cell-type.
**Differential expression**:
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
| --- | --- | --- | --- | --- | --- | --- | --- |
| macrophage | 0.91 | 2.03 | 0.61 | 0.85 | 0.29 | 0.93 | 12160.00 |
| type II pneumocyte | 0.94 | 1.49 | 0.56 | 0.86 | 0.36 | 0.88 | 9146.00 |
| basal cell | 0.76 | 2.04 | 0.54 | 0.70 | 0.44 | 0.81 | 2188.00 |
| capillary endothelial cell | 0.88 | 3.46 | 0.50 | 0.65 | 0.30 | 0.80 | 1534.00 |
| classical monocyte | 0.86 | 3.61 | 0.58 | 0.65 | 0.28 | 0.83 | 1487.00 |
| club cell | 0.85 | 3.17 | 0.58 | 0.62 | 0.33 | 0.79 | 1038.00 |
| non-classical monocyte | 0.78 | 3.58 | 0.60 | 0.65 | 0.33 | 0.84 | 1005.00 |
| respiratory goblet cell | 0.91 | 3.00 | 0.60 | 0.67 | 0.39 | 0.82 | 762.00 |
| basophil | 0.76 | 4.25 | 0.56 | 0.57 | 0.31 | 0.86 | 686.00 |
| lung ciliated cell | 0.75 | 3.53 | 0.57 | 0.65 | 0.47 | 0.86 | 602.00 |
| CD8-positive, alpha-beta T cell | 0.78 | 4.49 | 0.55 | 0.59 | 0.34 | 0.84 | 552.00 |
| CD4-positive, alpha-beta T cell | 0.84 | 4.61 | 0.54 | 0.54 | 0.31 | 0.83 | 543.00 |
| vein endothelial cell | 0.81 | 4.46 | 0.51 | 0.57 | 0.41 | 0.80 | 508.00 |
| lung microvascular endothelial cell | 0.75 | 3.76 | 0.65 | 0.67 | 0.38 | 0.86 | 485.00 |
| adventitial cell | 0.85 | 4.81 | 0.56 | 0.70 | 0.41 | 0.82 | 373.00 |
| fibroblast | 0.89 | 4.75 | 0.50 | 0.57 | 0.38 | 0.78 | 336.00 |
| dendritic cell | 0.86 | 4.87 | 0.54 | 0.60 | 0.38 | 0.83 | 316.00 |
| intermediate monocyte | 0.74 | 4.25 | 0.62 | 0.62 | 0.38 | 0.85 | 252.00 |
| pericyte | 0.86 | 4.97 | 0.55 | 0.53 | 0.39 | 0.79 | 213.00 |
| type I pneumocyte | 0.81 | 4.02 | 0.63 | 0.64 | 0.38 | 0.79 | 211.00 |
| endothelial cell of artery | 0.79 | 5.17 | 0.55 | 0.58 | 0.39 | 0.79 | 187.00 |
| neutrophil | 0.83 | 5.12 | 0.55 | 0.50 | 0.37 | 0.90 | 174.00 |
| plasma cell | 0.70 | 5.80 | 0.46 | 0.39 | 0.44 | 0.89 | 134.00 |
| effector CD4-positive, alpha-beta T cell | 0.73 | 5.07 | 0.56 | 0.52 | 0.36 | 0.81 | 132.00 |
| mature NK T cell | 0.66 | 5.31 | 0.53 | 0.51 | 0.40 | 0.80 | 132.00 |
| B cell | 0.59 | 5.61 | 0.51 | 0.45 | 0.37 | 0.77 | 87.00 |
| bronchial smooth muscle cell | 0.83 | 5.58 | 0.53 | 0.50 | 0.42 | 0.81 | 81.00 |
| effector CD8-positive, alpha-beta T cell | 0.72 | 4.94 | 0.57 | 0.54 | 0.37 | 0.83 | 80.00 |
| vascular associated smooth muscle cell | 0.82 | 4.97 | 0.58 | 0.53 | 0.45 | 0.81 | 80.00 |
| endothelial cell of lymphatic vessel | 0.49 | 5.86 | 0.50 | 0.46 | 0.39 | 0.76 | 47.00 |
| blood vessel endothelial cell | 0.67 | 5.04 | 0.59 | 0.56 | 0.41 | 0.82 | 47.00 |
| smooth muscle cell | 0.63 | 4.92 | 0.58 | 0.53 | 0.38 | 0.81 | 25.00 |
| pulmonary ionocyte | 0.18 | 6.58 | 0.42 | 0.31 | 0.38 | 0.72 | 19.00 |
| plasmacytoid dendritic cell | 0.38 | 5.92 | 0.41 | 0.40 | 0.38 | 0.84 | 18.00 |
| mesothelial cell | 0.38 | 5.69 | 0.54 | 0.45 | 0.38 | 0.72 | 17.00 |
| serous cell of epithelium of bronchus | 0.40 | 5.99 | 0.47 | 0.38 | 0.41 | 0.80 | 15.00 |
# Model Properties
We provide here key parameters used to setup and train the model.
Model Parameters
These provide the settings to setup the original model:
```json
{
"n_hidden": 128,
"n_latent": 5,
"n_layers": 2,
"weight_obs": false,
"dropout_rate": 0.05
}
```
Setup Data Arguments
Arguments passed to setup_anndata of the original model:
```json
{
"labels_key": "cell_ontology_class",
"layer": null,
"batch_key": null
}
```
Data Registry
Registry elements for AnnData manager:
| Registry Key | scvi-tools Location |
|--------------|---------------------------|
| X | adata.X |
| labels | adata.obs['_scvi_labels'] |
- **Data is Minified**: False
Summary Statistics
| Summary Stat Key | Value |
|------------------|-------|
| n_cells | 35672 |
| n_labels | 36 |
| n_vars | 3000 |
Training
**Training data url**: Not provided by uploader
If provided by the original uploader, for those interested in understanding or replicating the
training process, the code is available at the link below.
**Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
# References
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896