Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,27 +1,135 @@
|
|
1 |
---
|
2 |
-
license: cc-by-4.0
|
3 |
library_name: scvi-tools
|
|
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCVI
|
9 |
-
- scvi_version:1.
|
10 |
-
- anndata_version:0.
|
11 |
- modality:rna
|
12 |
-
- tissue:
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
16 |
-
# Description
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
```json
|
26 |
{
|
27 |
"n_hidden": 128,
|
@@ -37,7 +145,12 @@ Many model properties are in the model tags. Some more are listed below.
|
|
37 |
}
|
38 |
```
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
```json
|
42 |
{
|
43 |
"layer": null,
|
@@ -49,7 +162,29 @@ Many model properties are in the model tags. Some more are listed below.
|
|
49 |
}
|
50 |
```
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
| Summary Stat Key | Value |
|
54 |
|--------------------------|-------|
|
55 |
| n_batch | 5 |
|
@@ -59,40 +194,27 @@ Many model properties are in the model tags. Some more are listed below.
|
|
59 |
| n_labels | 36 |
|
60 |
| n_latent_qzm | 20 |
|
61 |
| n_latent_qzv | 20 |
|
62 |
-
| n_vars |
|
63 |
-
|
64 |
-
**model_data_registry**:
|
65 |
-
| Registry Key | scvi-tools Location |
|
66 |
-
|-------------------|--------------------------------------|
|
67 |
-
| X | adata.X |
|
68 |
-
| batch | adata.obs['_scvi_batch'] |
|
69 |
-
| labels | adata.obs['_scvi_labels'] |
|
70 |
-
| latent_qzm | adata.obsm['_scvi_latent_qzm'] |
|
71 |
-
| latent_qzv | adata.obsm['_scvi_latent_qzv'] |
|
72 |
-
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
73 |
-
| observed_lib_size | adata.obs['_scvi_observed_lib_size'] |
|
74 |
-
|
75 |
-
**model_parent_module**: scvi.model
|
76 |
|
77 |
-
|
78 |
|
79 |
-
# Training data
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
85 |
-
sure to provide this field if you want users to be able to access your training data. See the
|
86 |
-
documentation for details. -->
|
|
|
87 |
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
|
92 |
-
|
93 |
|
94 |
-
Training code url: N/A
|
95 |
|
96 |
# References
|
97 |
|
98 |
-
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|
|
|
1 |
---
|
|
|
2 |
library_name: scvi-tools
|
3 |
+
license: cc-by-4.0
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCVI
|
9 |
+
- scvi_version:1.2.0
|
10 |
+
- anndata_version:0.11.1
|
11 |
- modality:rna
|
12 |
+
- tissue:various
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
|
|
16 |
|
17 |
+
ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
|
18 |
+
latent space, integrate technical batches and impute dropouts.
|
19 |
+
The learned low-dimensional latent representation of the data can be used for visualization and
|
20 |
+
clustering.
|
21 |
+
|
22 |
+
scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
|
23 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
|
24 |
|
25 |
+
- See our original manuscript for further details of the model:
|
26 |
+
[scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
|
27 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
|
28 |
+
to leverage pre-trained models.
|
29 |
|
30 |
+
This model can be used for fine tuning on new data using our Arches framework:
|
31 |
+
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
32 |
+
|
33 |
+
|
34 |
+
# Model Description
|
35 |
+
|
36 |
+
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
|
37 |
|
38 |
+
# Metrics
|
39 |
+
|
40 |
+
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
41 |
+
|
42 |
+
<details>
|
43 |
+
<summary><strong>Coefficient of variation</strong></summary>
|
44 |
+
|
45 |
+
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
46 |
+
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
47 |
+
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
48 |
+
space might still be useful for analysis.
|
49 |
+
|
50 |
+
**Cell-wise Coefficient of Variation**:
|
51 |
+
|
52 |
+
| Metric | Training Value | Validation Value |
|
53 |
+
|-------------------------|----------------|------------------|
|
54 |
+
| Mean Absolute Error | 1.86 | 1.96 |
|
55 |
+
| Pearson Correlation | 0.82 | 0.80 |
|
56 |
+
| Spearman Correlation | 0.77 | 0.76 |
|
57 |
+
| R² (R-Squared) | 0.58 | 0.51 |
|
58 |
+
|
59 |
+
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
60 |
+
preserved by the generated model expression. This value is usually quite high.
|
61 |
+
|
62 |
+
**Gene-wise Coefficient of Variation**:
|
63 |
+
|
64 |
+
| Metric | Training Value |
|
65 |
+
|-------------------------|----------------|
|
66 |
+
| Mean Absolute Error | 17.35 |
|
67 |
+
| Pearson Correlation | 0.73 |
|
68 |
+
| Spearman Correlation | 0.82 |
|
69 |
+
| R² (R-Squared) | 0.26 |
|
70 |
+
|
71 |
+
</details>
|
72 |
+
|
73 |
+
<details>
|
74 |
+
<summary><strong>Differential expression metric</strong></summary>
|
75 |
+
|
76 |
+
The differential expression metric provides a summary of the differential expression analysis
|
77 |
+
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
78 |
+
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
79 |
+
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
80 |
+
cell-type.
|
81 |
+
|
82 |
+
**Differential expression**:
|
83 |
+
|
84 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
85 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
86 |
+
| macrophage | 0.94 | 1.19 | 0.79 | 0.94 | 0.24 | 0.92 | 12160.00 |
|
87 |
+
| type II pneumocyte | 0.95 | 0.78 | 0.83 | 0.95 | 0.32 | 0.87 | 9146.00 |
|
88 |
+
| basal cell | 0.90 | 1.49 | 0.69 | 0.85 | 0.43 | 0.82 | 2188.00 |
|
89 |
+
| capillary endothelial cell | 0.95 | 2.72 | 0.65 | 0.80 | 0.27 | 0.79 | 1534.00 |
|
90 |
+
| classical monocyte | 0.91 | 3.16 | 0.62 | 0.76 | 0.21 | 0.81 | 1487.00 |
|
91 |
+
| club cell | 0.93 | 2.87 | 0.64 | 0.73 | 0.29 | 0.78 | 1038.00 |
|
92 |
+
| non-classical monocyte | 0.89 | 2.92 | 0.69 | 0.76 | 0.28 | 0.83 | 1005.00 |
|
93 |
+
| respiratory goblet cell | 0.91 | 2.29 | 0.70 | 0.78 | 0.33 | 0.81 | 762.00 |
|
94 |
+
| basophil | 0.93 | 3.55 | 0.64 | 0.69 | 0.25 | 0.84 | 686.00 |
|
95 |
+
| lung ciliated cell | 0.62 | 2.41 | 0.75 | 0.84 | 0.41 | 0.84 | 602.00 |
|
96 |
+
| CD8-positive, alpha-beta T cell | 0.89 | 3.65 | 0.64 | 0.70 | 0.27 | 0.82 | 552.00 |
|
97 |
+
| CD4-positive, alpha-beta T cell | 0.90 | 3.88 | 0.62 | 0.65 | 0.26 | 0.82 | 543.00 |
|
98 |
+
| vein endothelial cell | 0.92 | 3.70 | 0.60 | 0.70 | 0.34 | 0.77 | 508.00 |
|
99 |
+
| lung microvascular endothelial cell | 0.90 | 3.83 | 0.63 | 0.68 | 0.31 | 0.85 | 485.00 |
|
100 |
+
| adventitial cell | 0.76 | 2.90 | 0.75 | 0.90 | 0.34 | 0.80 | 373.00 |
|
101 |
+
| fibroblast | 0.86 | 4.30 | 0.56 | 0.70 | 0.33 | 0.76 | 336.00 |
|
102 |
+
| dendritic cell | 0.87 | 4.03 | 0.65 | 0.74 | 0.30 | 0.81 | 316.00 |
|
103 |
+
| intermediate monocyte | 0.91 | 3.95 | 0.64 | 0.64 | 0.31 | 0.83 | 252.00 |
|
104 |
+
| pericyte | 0.87 | 4.51 | 0.59 | 0.60 | 0.33 | 0.77 | 213.00 |
|
105 |
+
| type I pneumocyte | 0.89 | 3.83 | 0.64 | 0.68 | 0.32 | 0.77 | 211.00 |
|
106 |
+
| endothelial cell of artery | 0.86 | 5.03 | 0.57 | 0.64 | 0.33 | 0.77 | 187.00 |
|
107 |
+
| neutrophil | 0.87 | 4.44 | 0.60 | 0.58 | 0.28 | 0.88 | 174.00 |
|
108 |
+
| plasma cell | 0.78 | 4.28 | 0.61 | 0.58 | 0.27 | 0.85 | 134.00 |
|
109 |
+
| effector CD4-positive, alpha-beta T cell | 0.89 | 3.91 | 0.65 | 0.63 | 0.32 | 0.80 | 132.00 |
|
110 |
+
| mature NK T cell | 0.84 | 4.93 | 0.56 | 0.55 | 0.37 | 0.79 | 132.00 |
|
111 |
+
| B cell | 0.76 | 4.84 | 0.57 | 0.52 | 0.34 | 0.75 | 87.00 |
|
112 |
+
| bronchial smooth muscle cell | 0.71 | 5.09 | 0.59 | 0.59 | 0.33 | 0.77 | 81.00 |
|
113 |
+
| effector CD8-positive, alpha-beta T cell | 0.81 | 4.19 | 0.63 | 0.60 | 0.35 | 0.82 | 80.00 |
|
114 |
+
| vascular associated smooth muscle cell | 0.79 | 4.85 | 0.59 | 0.58 | 0.36 | 0.78 | 80.00 |
|
115 |
+
| endothelial cell of lymphatic vessel | 0.47 | 6.03 | 0.52 | 0.49 | 0.34 | 0.74 | 47.00 |
|
116 |
+
| blood vessel endothelial cell | 0.70 | 4.01 | 0.67 | 0.66 | 0.35 | 0.80 | 47.00 |
|
117 |
+
| smooth muscle cell | 0.66 | 4.11 | 0.64 | 0.61 | 0.35 | 0.79 | 25.00 |
|
118 |
+
| pulmonary ionocyte | 0.42 | 6.28 | 0.46 | 0.32 | 0.34 | 0.72 | 19.00 |
|
119 |
+
| plasmacytoid dendritic cell | 0.58 | 5.38 | 0.48 | 0.48 | 0.35 | 0.83 | 18.00 |
|
120 |
+
| mesothelial cell | 0.54 | 5.63 | 0.54 | 0.48 | 0.37 | 0.73 | 17.00 |
|
121 |
+
| serous cell of epithelium of bronchus | 0.60 | 5.07 | 0.54 | 0.47 | 0.37 | 0.79 | 15.00 |
|
122 |
+
|
123 |
+
</details>
|
124 |
+
|
125 |
+
# Model Properties
|
126 |
+
|
127 |
+
We provide here key parameters used to setup and train the model.
|
128 |
+
|
129 |
+
<details>
|
130 |
+
<summary><strong>Model Parameters</strong></summary>
|
131 |
+
|
132 |
+
These provide the settings to setup the original model:
|
133 |
```json
|
134 |
{
|
135 |
"n_hidden": 128,
|
|
|
145 |
}
|
146 |
```
|
147 |
|
148 |
+
</details>
|
149 |
+
|
150 |
+
<details>
|
151 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
152 |
+
|
153 |
+
Arguments passed to setup_anndata of the original model:
|
154 |
```json
|
155 |
{
|
156 |
"layer": null,
|
|
|
162 |
}
|
163 |
```
|
164 |
|
165 |
+
</details>
|
166 |
+
|
167 |
+
<details>
|
168 |
+
<summary><strong>Data Registry</strong></summary>
|
169 |
+
|
170 |
+
Registry elements for AnnData manager:
|
171 |
+
| Registry Key | scvi-tools Location |
|
172 |
+
|-------------------|--------------------------------------|
|
173 |
+
| X | adata.X |
|
174 |
+
| batch | adata.obs['_scvi_batch'] |
|
175 |
+
| labels | adata.obs['_scvi_labels'] |
|
176 |
+
| latent_qzm | adata.obsm['scvi_latent_qzm'] |
|
177 |
+
| latent_qzv | adata.obsm['scvi_latent_qzv'] |
|
178 |
+
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
179 |
+
| observed_lib_size | adata.obs['observed_lib_size'] |
|
180 |
+
|
181 |
+
- **Data is Minified**: False
|
182 |
+
|
183 |
+
</details>
|
184 |
+
|
185 |
+
<details>
|
186 |
+
<summary><strong>Summary Statistics</strong></summary>
|
187 |
+
|
188 |
| Summary Stat Key | Value |
|
189 |
|--------------------------|-------|
|
190 |
| n_batch | 5 |
|
|
|
194 |
| n_labels | 36 |
|
195 |
| n_latent_qzm | 20 |
|
196 |
| n_latent_qzv | 20 |
|
197 |
+
| n_vars | 3000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
</details>
|
200 |
|
|
|
201 |
|
202 |
+
<details>
|
203 |
+
<summary><strong>Training</strong></summary>
|
204 |
|
205 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
206 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
207 |
+
scvi-tools documentation for details. -->
|
208 |
+
**Training data url**: Not provided by uploader
|
209 |
|
210 |
+
If provided by the original uploader, for those interested in understanding or replicating the
|
211 |
+
training process, the code is available at the link below.
|
212 |
|
213 |
+
**Training Code URL**: Not provided by uploader
|
214 |
|
215 |
+
</details>
|
216 |
|
|
|
217 |
|
218 |
# References
|
219 |
|
220 |
+
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|