canergen commited on
Commit
e62dee9
·
verified ·
1 Parent(s): b9e3bd0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +135 -29
README.md CHANGED
@@ -1,27 +1,118 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:CondSCVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Muscle
13
  - annotated:True
14
  ---
15
 
16
- # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
19
 
20
- # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -32,48 +123,63 @@ Many model properties are in the model tags. Some more are listed below.
32
  }
33
  ```
34
 
35
- **model_setup_anndata_args**:
 
 
 
 
 
36
  ```json
37
  {
38
  "labels_key": "cell_ontology_class",
39
- "layer": null
 
40
  }
41
  ```
42
 
43
- **model_summary_stats**:
44
- | Summary Stat Key | Value |
45
- |------------------|-------|
46
- | n_cells | 30746 |
47
- | n_labels | 19 |
48
- | n_vars | 4000 |
49
 
50
- **model_data_registry**:
51
  | Registry Key | scvi-tools Location |
52
  |--------------|---------------------------|
53
  | X | adata.X |
54
  | labels | adata.obs['_scvi_labels'] |
55
 
56
- **model_parent_module**: scvi.model
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- **data_is_minified**: False
59
 
60
- # Training data
61
 
62
- This is an optional link to where the training data is stored if it is too large
63
- to host on the huggingface Model hub.
64
 
65
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
66
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
67
- documentation for details. -->
 
68
 
69
- Training data url: https://zenodo.org/records/7608635/files/Muscle_training_data.h5ad
 
70
 
71
- # Training code
72
 
73
- This is an optional link to the code used to train the model.
74
 
75
- Training code url: N/A
76
 
77
  # References
78
 
79
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:CondSCVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
16
+
17
+ CondSCVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space. The predictions of the model are meant to be afterward
19
+ used for deconvolution of a second spatial transcriptomics dataset in DestVI. DestVI predicts the
20
+ cell-type proportions as well as cell type-specific activation state
21
+ in the spatial data.
22
+
23
+ CondSCVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
24
+ cell-type annotation for all cells.
25
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html)
26
+ for DestVI including a description of CondSCVI.
27
+
28
+ - See our original manuscript for further details of the model:
29
+ [DestVI manuscript](https://www.nature.com/articles/s41587-022-01272-8).
30
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
31
+ how to leverage pre-trained models.
32
+
33
+
34
+ # Model Description
35
 
36
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
37
 
38
+ # Metrics
39
+
40
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
+
42
+ <details>
43
+ <summary><strong>Coefficient of variation</strong></summary>
44
+
45
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
46
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
48
+ space might still be useful for analysis.
49
+
50
+ **Cell-wise Coefficient of Variation**:
51
+
52
+ | Metric | Training Value | Validation Value |
53
+ |-------------------------|----------------|------------------|
54
+ | Mean Absolute Error | 2.47 | 2.54 |
55
+ | Pearson Correlation | 0.49 | 0.45 |
56
+ | Spearman Correlation | 0.42 | 0.39 |
57
+ | R² (R-Squared) | -0.40 | -0.50 |
58
+
59
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
60
+ preserved by the generated model expression. This value is usually quite high.
61
+
62
+ **Gene-wise Coefficient of Variation**:
63
+
64
+ | Metric | Training Value |
65
+ |-------------------------|----------------|
66
+ | Mean Absolute Error | 23.50 |
67
+ | Pearson Correlation | 0.75 |
68
+ | Spearman Correlation | 0.86 |
69
+ | R² (R-Squared) | -0.51 |
70
+
71
+ </details>
72
+
73
+ <details>
74
+ <summary><strong>Differential expression metric</strong></summary>
75
+
76
+ The differential expression metric provides a summary of the differential expression analysis
77
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
78
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
79
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
80
+ cell-type.
81
+
82
+ **Differential expression**:
83
 
84
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
85
+ | --- | --- | --- | --- | --- | --- | --- | --- |
86
+ | mesenchymal stem cell | 0.92 | 0.95 | 0.67 | 0.90 | 0.39 | 0.85 | 14148.00 |
87
+ | skeletal muscle satellite stem cell | 0.84 | 1.77 | 0.50 | 0.77 | 0.36 | 0.78 | 4831.00 |
88
+ | endothelial cell of vascular tree | 0.88 | 2.03 | 0.53 | 0.75 | 0.34 | 0.79 | 3602.00 |
89
+ | capillary endothelial cell | 0.91 | 2.68 | 0.53 | 0.68 | 0.33 | 0.76 | 2015.00 |
90
+ | macrophage | 0.88 | 2.79 | 0.50 | 0.73 | 0.39 | 0.83 | 1989.00 |
91
+ | pericyte | 0.88 | 2.64 | 0.55 | 0.69 | 0.39 | 0.76 | 1794.00 |
92
+ | CD8-positive, alpha-beta T cell | 0.79 | 5.74 | 0.48 | 0.57 | 0.28 | 0.80 | 536.00 |
93
+ | T cell | 0.85 | 5.41 | 0.48 | 0.50 | 0.37 | 0.78 | 407.00 |
94
+ | fast muscle cell | 0.92 | 6.68 | 0.50 | 0.47 | 0.34 | 0.91 | 266.00 |
95
+ | tendon cell | 0.64 | 5.28 | 0.47 | 0.43 | 0.40 | 0.67 | 234.00 |
96
+ | CD4-positive, alpha-beta T cell | 0.78 | 6.17 | 0.48 | 0.53 | 0.34 | 0.75 | 221.00 |
97
+ | slow muscle cell | 0.94 | 6.15 | 0.53 | 0.50 | 0.33 | 0.89 | 163.00 |
98
+ | mature NK T cell | 0.84 | 7.17 | 0.48 | 0.52 | 0.36 | 0.76 | 137.00 |
99
+ | endothelial cell of lymphatic vessel | 0.48 | 6.39 | 0.41 | 0.34 | 0.40 | 0.66 | 134.00 |
100
+ | endothelial cell of artery | 0.74 | 5.70 | 0.52 | 0.49 | 0.39 | 0.74 | 133.00 |
101
+ | smooth muscle cell | 0.79 | 5.64 | 0.55 | 0.50 | 0.38 | 0.76 | 58.00 |
102
+ | mast cell | 0.58 | 7.75 | 0.37 | 0.36 | 0.38 | 0.81 | 46.00 |
103
+ | erythrocyte | 0.09 | 5.27 | 0.20 | 0.39 | 0.64 | 0.98 | 20.00 |
104
+ | mesothelial cell | 0.18 | 7.71 | 0.36 | 0.27 | 0.38 | 0.72 | 12.00 |
105
 
106
+ </details>
107
+
108
+ # Model Properties
109
+
110
+ We provide here key parameters used to setup and train the model.
111
+
112
+ <details>
113
+ <summary><strong>Model Parameters</strong></summary>
114
+
115
+ These provide the settings to setup the original model:
116
  ```json
117
  {
118
  "n_hidden": 128,
 
123
  }
124
  ```
125
 
126
+ </details>
127
+
128
+ <details>
129
+ <summary><strong>Setup Data Arguments</strong></summary>
130
+
131
+ Arguments passed to setup_anndata of the original model:
132
  ```json
133
  {
134
  "labels_key": "cell_ontology_class",
135
+ "layer": null,
136
+ "batch_key": null
137
  }
138
  ```
139
 
140
+ </details>
141
+
142
+ <details>
143
+ <summary><strong>Data Registry</strong></summary>
 
 
144
 
145
+ Registry elements for AnnData manager:
146
  | Registry Key | scvi-tools Location |
147
  |--------------|---------------------------|
148
  | X | adata.X |
149
  | labels | adata.obs['_scvi_labels'] |
150
 
151
+ - **Data is Minified**: False
152
+
153
+ </details>
154
+
155
+ <details>
156
+ <summary><strong>Summary Statistics</strong></summary>
157
+
158
+ | Summary Stat Key | Value |
159
+ |------------------|-------|
160
+ | n_cells | 30746 |
161
+ | n_labels | 19 |
162
+ | n_vars | 3000 |
163
 
164
+ </details>
165
 
 
166
 
167
+ <details>
168
+ <summary><strong>Training</strong></summary>
169
 
170
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
171
+ sure to provide this field if you want users to be able to access your training data. See the
172
+ scvi-tools documentation for details. -->
173
+ **Training data url**: Not provided by uploader
174
 
175
+ If provided by the original uploader, for those interested in understanding or replicating the
176
+ training process, the code is available at the link below.
177
 
178
+ **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
179
 
180
+ </details>
181
 
 
182
 
183
  # References
184
 
185
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896