canergen commited on
Commit
1080795
·
verified ·
1 Parent(s): d07187e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +148 -37
README.md CHANGED
@@ -1,27 +1,123 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Thymus
13
  - annotated:True
14
  ---
15
 
16
- # Description
17
 
18
- Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # Model properties
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -38,7 +134,12 @@ Many model properties are in the model tags. Some more are listed below.
38
  }
39
  ```
40
 
41
- **model_setup_anndata_args**:
 
 
 
 
 
42
  ```json
43
  {
44
  "labels_key": "cell_ontology_class",
@@ -47,11 +148,34 @@ Many model properties are in the model tags. Some more are listed below.
47
  "batch_key": "donor_assay",
48
  "size_factor_key": null,
49
  "categorical_covariate_keys": null,
50
- "continuous_covariate_keys": null
 
51
  }
52
  ```
53
 
54
- **model_summary_stats**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  | Summary Stat Key | Value |
56
  |--------------------------|-------|
57
  | n_batch | 2 |
@@ -61,40 +185,27 @@ Many model properties are in the model tags. Some more are listed below.
61
  | n_labels | 22 |
62
  | n_latent_qzm | 20 |
63
  | n_latent_qzv | 20 |
64
- | n_vars | 4000 |
65
-
66
- **model_data_registry**:
67
- | Registry Key | scvi-tools Location |
68
- |-------------------|----------------------------------------|
69
- | X | adata.X |
70
- | batch | adata.obs['_scvi_batch'] |
71
- | labels | adata.obs['_scvi_labels'] |
72
- | latent_qzm | adata.obsm['_scanvi_latent_qzm'] |
73
- | latent_qzv | adata.obsm['_scanvi_latent_qzv'] |
74
- | minify_type | adata.uns['_scvi_adata_minify_type'] |
75
- | observed_lib_size | adata.obs['_scanvi_observed_lib_size'] |
76
-
77
- **model_parent_module**: scvi.model
78
 
79
- **data_is_minified**: True
80
 
81
- # Training data
82
 
83
- This is an optional link to where the training data is stored if it is too large
84
- to host on the huggingface Model hub.
85
 
86
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
87
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
88
- documentation for details. -->
 
89
 
90
- Training data url: https://zenodo.org/records/7608635/files/Thymus_training_data.h5ad
 
91
 
92
- # Training code
93
 
94
- This is an optional link to the code used to train the model.
95
 
96
- Training code url: N/A
97
 
98
  # References
99
 
100
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
 
16
 
17
+ ScANVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space, integrate technical batches and impute dropouts.
19
+ In addition, to scVI, ScANVI is a semi-supervised model that can leverage labeled data to learn a
20
+ cell-type classifier in the latent space and afterward predict cell types of new data.
21
+ The learned low-dimensional latent representation of the data can be used for visualization and
22
+ clustering.
23
+
24
+ scANVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
25
+ cell-type annotation for a subset of cells.
26
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scanvi.html).
27
+
28
+ - See our original manuscript for further details of the model:
29
+ [scANVI manuscript](https://www.embopress.org/doi/full/10.15252/msb.20209620).
30
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
31
+ how to leverage pre-trained models.
32
 
33
+ This model can be used for fine tuning on new data using our Arches framework:
34
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
35
 
 
36
 
37
+ # Model Description
38
+
39
+ Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
40
+
41
+ # Metrics
42
+
43
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
44
+
45
+ <details>
46
+ <summary><strong>Coefficient of variation</strong></summary>
47
+
48
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
49
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
50
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
51
+ space might still be useful for analysis.
52
+
53
+ **Cell-wise Coefficient of Variation**:
54
+
55
+ | Metric | Training Value | Validation Value |
56
+ |-------------------------|----------------|------------------|
57
+ | Mean Absolute Error | 1.67 | 1.74 |
58
+ | Pearson Correlation | 0.88 | 0.86 |
59
+ | Spearman Correlation | 0.79 | 0.79 |
60
+ | R² (R-Squared) | 0.49 | 0.44 |
61
+
62
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
63
+ preserved by the generated model expression. This value is usually quite high.
64
+
65
+ **Gene-wise Coefficient of Variation**:
66
+
67
+ | Metric | Training Value |
68
+ |-------------------------|----------------|
69
+ | Mean Absolute Error | 4.40 |
70
+ | Pearson Correlation | 0.86 |
71
+ | Spearman Correlation | 0.98 |
72
+ | R² (R-Squared) | 0.36 |
73
+
74
+ </details>
75
+
76
+ <details>
77
+ <summary><strong>Differential expression metric</strong></summary>
78
+
79
+ The differential expression metric provides a summary of the differential expression analysis
80
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
81
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
82
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
83
+ cell-type.
84
+
85
+ **Differential expression**:
86
+
87
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
88
+ | --- | --- | --- | --- | --- | --- | --- | --- |
89
+ | CD4-positive helper T cell | 0.91 | 3.04 | 0.72 | 0.84 | 0.16 | 0.88 | 3356.00 |
90
+ | fibroblast | 0.96 | 1.15 | 0.82 | 0.97 | 0.45 | 0.92 | 3251.00 |
91
+ | innate lymphoid cell | 0.90 | 2.17 | 0.67 | 0.82 | 0.20 | 0.82 | 2594.00 |
92
+ | B cell | 0.94 | 2.63 | 0.64 | 0.76 | 0.19 | 0.84 | 1919.00 |
93
+ | DN3 thymocyte | 0.92 | 3.12 | 0.69 | 0.80 | 0.18 | 0.82 | 1788.00 |
94
+ | plasma cell | 0.90 | 1.78 | 0.73 | 0.88 | 0.26 | 0.94 | 1465.00 |
95
+ | vein endothelial cell | 0.93 | 1.77 | 0.79 | 0.90 | 0.35 | 0.87 | 1442.00 |
96
+ | vascular associated smooth muscle cell | 0.92 | 2.01 | 0.76 | 0.90 | 0.36 | 0.89 | 1439.00 |
97
+ | DN1 thymic pro-T cell | 0.92 | 3.69 | 0.66 | 0.76 | 0.22 | 0.83 | 985.00 |
98
+ | naive regulatory T cell | 0.88 | 3.55 | 0.73 | 0.79 | 0.19 | 0.84 | 761.00 |
99
+ | CD8-positive, alpha-beta cytotoxic T cell | 0.91 | 3.63 | 0.72 | 0.78 | 0.19 | 0.84 | 501.00 |
100
+ | T follicular helper cell | 0.85 | 4.12 | 0.67 | 0.72 | 0.20 | 0.81 | 398.00 |
101
+ | capillary endothelial cell | 0.91 | 3.17 | 0.70 | 0.78 | 0.37 | 0.82 | 383.00 |
102
+ | endothelial cell of artery | 0.91 | 3.10 | 0.72 | 0.81 | 0.36 | 0.83 | 355.00 |
103
+ | macrophage | 0.92 | 2.70 | 0.73 | 0.82 | 0.35 | 0.83 | 303.00 |
104
+ | endothelial cell of lymphatic vessel | 0.92 | 3.02 | 0.75 | 0.84 | 0.39 | 0.84 | 256.00 |
105
+ | medullary thymic epithelial cell | 0.78 | 2.32 | 0.81 | 0.91 | 0.45 | 0.89 | 140.00 |
106
+ | monocyte | 0.85 | 4.00 | 0.68 | 0.68 | 0.36 | 0.81 | 88.00 |
107
+ | mature NK T cell | 0.75 | 5.14 | 0.57 | 0.56 | 0.31 | 0.68 | 80.00 |
108
+ | erythrocyte | 0.76 | 4.65 | 0.57 | 0.52 | 0.25 | 0.87 | 39.00 |
109
+ | DN4 thymocyte | 0.74 | 4.93 | 0.63 | 0.65 | 0.38 | 0.77 | 32.00 |
110
+
111
+ </details>
112
+
113
+ # Model Properties
114
+
115
+ We provide here key parameters used to setup and train the model.
116
+
117
+ <details>
118
+ <summary><strong>Model Parameters</strong></summary>
119
+
120
+ These provide the settings to setup the original model:
121
  ```json
122
  {
123
  "n_hidden": 128,
 
134
  }
135
  ```
136
 
137
+ </details>
138
+
139
+ <details>
140
+ <summary><strong>Setup Data Arguments</strong></summary>
141
+
142
+ Arguments passed to setup_anndata of the original model:
143
  ```json
144
  {
145
  "labels_key": "cell_ontology_class",
 
148
  "batch_key": "donor_assay",
149
  "size_factor_key": null,
150
  "categorical_covariate_keys": null,
151
+ "continuous_covariate_keys": null,
152
+ "use_minified": false
153
  }
154
  ```
155
 
156
+ </details>
157
+
158
+ <details>
159
+ <summary><strong>Data Registry</strong></summary>
160
+
161
+ Registry elements for AnnData manager:
162
+ | Registry Key | scvi-tools Location |
163
+ |-------------------|--------------------------------------|
164
+ | X | adata.X |
165
+ | batch | adata.obs['_scvi_batch'] |
166
+ | labels | adata.obs['_scvi_labels'] |
167
+ | latent_qzm | adata.obsm['scanvi_latent_qzm'] |
168
+ | latent_qzv | adata.obsm['scanvi_latent_qzv'] |
169
+ | minify_type | adata.uns['_scvi_adata_minify_type'] |
170
+ | observed_lib_size | adata.obs['observed_lib_size'] |
171
+
172
+ - **Data is Minified**: False
173
+
174
+ </details>
175
+
176
+ <details>
177
+ <summary><strong>Summary Statistics</strong></summary>
178
+
179
  | Summary Stat Key | Value |
180
  |--------------------------|-------|
181
  | n_batch | 2 |
 
185
  | n_labels | 22 |
186
  | n_latent_qzm | 20 |
187
  | n_latent_qzv | 20 |
188
+ | n_vars | 3000 |
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
+ </details>
191
 
 
192
 
193
+ <details>
194
+ <summary><strong>Training</strong></summary>
195
 
196
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
197
+ sure to provide this field if you want users to be able to access your training data. See the
198
+ scvi-tools documentation for details. -->
199
+ **Training data url**: Not provided by uploader
200
 
201
+ If provided by the original uploader, for those interested in understanding or replicating the
202
+ training process, the code is available at the link below.
203
 
204
+ **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
205
 
206
+ </details>
207
 
 
208
 
209
  # References
210
 
211
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896