canergen commited on
Commit
76fcb7d
·
verified ·
1 Parent(s): af96e16

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +137 -36
README.md CHANGED
@@ -1,27 +1,113 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Tongue
13
  - annotated:True
14
  ---
15
 
16
- # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
19
 
20
- # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
 
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -38,7 +124,12 @@ Many model properties are in the model tags. Some more are listed below.
38
  }
39
  ```
40
 
41
- **model_setup_anndata_args**:
 
 
 
 
 
42
  ```json
43
  {
44
  "labels_key": "cell_ontology_class",
@@ -47,11 +138,34 @@ Many model properties are in the model tags. Some more are listed below.
47
  "batch_key": "donor_assay",
48
  "size_factor_key": null,
49
  "categorical_covariate_keys": null,
50
- "continuous_covariate_keys": null
 
51
  }
52
  ```
53
 
54
- **model_summary_stats**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  | Summary Stat Key | Value |
56
  |--------------------------|-------|
57
  | n_batch | 4 |
@@ -61,40 +175,27 @@ Many model properties are in the model tags. Some more are listed below.
61
  | n_labels | 12 |
62
  | n_latent_qzm | 20 |
63
  | n_latent_qzv | 20 |
64
- | n_vars | 4000 |
65
-
66
- **model_data_registry**:
67
- | Registry Key | scvi-tools Location |
68
- |-------------------|----------------------------------------|
69
- | X | adata.X |
70
- | batch | adata.obs['_scvi_batch'] |
71
- | labels | adata.obs['_scvi_labels'] |
72
- | latent_qzm | adata.obsm['_scanvi_latent_qzm'] |
73
- | latent_qzv | adata.obsm['_scanvi_latent_qzv'] |
74
- | minify_type | adata.uns['_scvi_adata_minify_type'] |
75
- | observed_lib_size | adata.obs['_scanvi_observed_lib_size'] |
76
-
77
- **model_parent_module**: scvi.model
78
 
79
- **data_is_minified**: True
80
 
81
- # Training data
82
 
83
- This is an optional link to where the training data is stored if it is too large
84
- to host on the huggingface Model hub.
85
 
86
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
87
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
88
- documentation for details. -->
 
89
 
90
- Training data url: https://zenodo.org/records/7608635/files/Tongue_training_data.h5ad
 
91
 
92
- # Training code
93
 
94
- This is an optional link to the code used to train the model.
95
 
96
- Training code url: N/A
97
 
98
  # References
99
 
100
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
16
+
17
+ ScANVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space, integrate technical batches and impute dropouts.
19
+ In addition, to scVI, ScANVI is a semi-supervised model that can leverage labeled data to learn a
20
+ cell-type classifier in the latent space and afterward predict cell types of new data.
21
+ The learned low-dimensional latent representation of the data can be used for visualization and
22
+ clustering.
23
+
24
+ scANVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
25
+ cell-type annotation for a subset of cells.
26
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scanvi.html).
27
+
28
+ - See our original manuscript for further details of the model:
29
+ [scANVI manuscript](https://www.embopress.org/doi/full/10.15252/msb.20209620).
30
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
31
+ how to leverage pre-trained models.
32
+
33
+ This model can be used for fine tuning on new data using our Arches framework:
34
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
35
+
36
+
37
+ # Model Description
38
 
39
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
40
 
41
+ # Metrics
42
+
43
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
44
+
45
+ <details>
46
+ <summary><strong>Coefficient of variation</strong></summary>
47
+
48
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
49
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
50
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
51
+ space might still be useful for analysis.
52
+
53
+ **Cell-wise Coefficient of Variation**:
54
+
55
+ | Metric | Training Value | Validation Value |
56
+ |-------------------------|----------------|------------------|
57
+ | Mean Absolute Error | 1.08 | 1.10 |
58
+ | Pearson Correlation | 0.89 | 0.89 |
59
+ | Spearman Correlation | 0.87 | 0.87 |
60
+ | R² (R-Squared) | 0.77 | 0.76 |
61
+
62
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
63
+ preserved by the generated model expression. This value is usually quite high.
64
+
65
+ **Gene-wise Coefficient of Variation**:
66
+
67
+ | Metric | Training Value |
68
+ |-------------------------|----------------|
69
+ | Mean Absolute Error | 16.27 |
70
+ | Pearson Correlation | 0.63 |
71
+ | Spearman Correlation | 0.68 |
72
+ | R² (R-Squared) | -1.28 |
73
+
74
+ </details>
75
 
76
+ <details>
77
+ <summary><strong>Differential expression metric</strong></summary>
78
 
79
+ The differential expression metric provides a summary of the differential expression analysis
80
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
81
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
82
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
83
+ cell-type.
84
+
85
+ **Differential expression**:
86
+
87
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
88
+ | --- | --- | --- | --- | --- | --- | --- | --- |
89
+ | basal cell | 0.90 | 0.33 | 0.86 | 0.97 | 0.42 | 0.89 | 6281.00 |
90
+ | keratinocyte | 0.87 | 0.85 | 0.73 | 0.97 | 0.23 | 0.90 | 3667.00 |
91
+ | epithelial cell | 0.87 | 0.51 | 0.76 | 0.93 | 0.53 | 0.87 | 2114.00 |
92
+ | leukocyte | 0.85 | 0.75 | 0.73 | 0.94 | 0.38 | 0.87 | 2109.00 |
93
+ | fibroblast | 0.78 | 2.43 | 0.63 | 0.83 | 0.44 | 0.80 | 251.00 |
94
+ | vein endothelial cell | 0.79 | 2.94 | 0.61 | 0.81 | 0.46 | 0.81 | 226.00 |
95
+ | pericyte | 0.75 | 3.36 | 0.63 | 0.75 | 0.40 | 0.72 | 117.00 |
96
+ | capillary endothelial cell | 0.78 | 3.76 | 0.65 | 0.76 | 0.43 | 0.74 | 101.00 |
97
+ | tongue muscle cell | 0.73 | 5.22 | 0.57 | 0.59 | 0.37 | 0.70 | 60.00 |
98
+ | endothelial cell of lymphatic vessel | 0.61 | 5.36 | 0.55 | 0.54 | 0.44 | 0.71 | 44.00 |
99
+ | endothelial cell of artery | 0.67 | 4.92 | 0.61 | 0.65 | 0.40 | 0.71 | 40.00 |
100
+
101
+ </details>
102
+
103
+ # Model Properties
104
+
105
+ We provide here key parameters used to setup and train the model.
106
+
107
+ <details>
108
+ <summary><strong>Model Parameters</strong></summary>
109
+
110
+ These provide the settings to setup the original model:
111
  ```json
112
  {
113
  "n_hidden": 128,
 
124
  }
125
  ```
126
 
127
+ </details>
128
+
129
+ <details>
130
+ <summary><strong>Setup Data Arguments</strong></summary>
131
+
132
+ Arguments passed to setup_anndata of the original model:
133
  ```json
134
  {
135
  "labels_key": "cell_ontology_class",
 
138
  "batch_key": "donor_assay",
139
  "size_factor_key": null,
140
  "categorical_covariate_keys": null,
141
+ "continuous_covariate_keys": null,
142
+ "use_minified": false
143
  }
144
  ```
145
 
146
+ </details>
147
+
148
+ <details>
149
+ <summary><strong>Data Registry</strong></summary>
150
+
151
+ Registry elements for AnnData manager:
152
+ | Registry Key | scvi-tools Location |
153
+ |-------------------|--------------------------------------|
154
+ | X | adata.X |
155
+ | batch | adata.obs['_scvi_batch'] |
156
+ | labels | adata.obs['_scvi_labels'] |
157
+ | latent_qzm | adata.obsm['scanvi_latent_qzm'] |
158
+ | latent_qzv | adata.obsm['scanvi_latent_qzv'] |
159
+ | minify_type | adata.uns['_scvi_adata_minify_type'] |
160
+ | observed_lib_size | adata.obs['observed_lib_size'] |
161
+
162
+ - **Data is Minified**: False
163
+
164
+ </details>
165
+
166
+ <details>
167
+ <summary><strong>Summary Statistics</strong></summary>
168
+
169
  | Summary Stat Key | Value |
170
  |--------------------------|-------|
171
  | n_batch | 4 |
 
175
  | n_labels | 12 |
176
  | n_latent_qzm | 20 |
177
  | n_latent_qzv | 20 |
178
+ | n_vars | 3000 |
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
+ </details>
181
 
 
182
 
183
+ <details>
184
+ <summary><strong>Training</strong></summary>
185
 
186
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
187
+ sure to provide this field if you want users to be able to access your training data. See the
188
+ scvi-tools documentation for details. -->
189
+ **Training data url**: Not provided by uploader
190
 
191
+ If provided by the original uploader, for those interested in understanding or replicating the
192
+ training process, the code is available at the link below.
193
 
194
+ **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
195
 
196
+ </details>
197
 
 
198
 
199
  # References
200
 
201
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896