Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -12,15 +12,36 @@ tags:
|
|
12 |
- annotated:False
|
13 |
---
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
scVI model trained on synthetic IID data and uploaded with the minified data.
|
18 |
|
19 |
-
# Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
```json
|
25 |
{
|
26 |
"n_hidden": 128,
|
@@ -33,7 +54,11 @@ Many model properties are in the model tags. Some more are listed below.
|
|
33 |
}
|
34 |
```
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
```json
|
38 |
{
|
39 |
"layer": null,
|
@@ -45,19 +70,11 @@ Many model properties are in the model tags. Some more are listed below.
|
|
45 |
}
|
46 |
```
|
47 |
|
48 |
-
|
49 |
-
| Summary Stat Key | Value |
|
50 |
-
|--------------------------|-------|
|
51 |
-
| n_batch | 1 |
|
52 |
-
| n_cells | 400 |
|
53 |
-
| n_extra_categorical_covs | 0 |
|
54 |
-
| n_extra_continuous_covs | 0 |
|
55 |
-
| n_labels | 1 |
|
56 |
-
| n_latent_qzm | 10 |
|
57 |
-
| n_latent_qzv | 10 |
|
58 |
-
| n_vars | 100 |
|
59 |
|
60 |
-
|
|
|
|
|
61 |
| Registry Key | scvi-tools Location |
|
62 |
|-------------------|--------------------------------------|
|
63 |
| X | adata.X |
|
@@ -68,27 +85,35 @@ Many model properties are in the model tags. Some more are listed below.
|
|
68 |
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
69 |
| observed_lib_size | adata.obs['observed_lib_size'] |
|
70 |
|
71 |
-
**
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
to host on the huggingface Model hub.
|
79 |
|
80 |
-
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
81 |
-
sure to provide this field if you want users to be able to access your training data. See the
|
82 |
-
scvi-tools documentation for details. -->
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
92 |
# References
|
93 |
|
94 |
-
To be added...
|
|
|
12 |
- annotated:False
|
13 |
---
|
14 |
|
15 |
+
|
16 |
+
ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying latent space, integrate technical batches and impute dropouts.
|
17 |
+
The learned low-dimensional latent representation of the data can be used for visualization and clustering.
|
18 |
+
|
19 |
+
scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
|
20 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
|
21 |
+
|
22 |
+
- See our original manuscript for further details of the model: [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
|
23 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how to leverage pre-trained models.
|
24 |
+
|
25 |
+
This model can be used for fine tuning on new data using our Arches framework: [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
26 |
+
|
27 |
+
|
28 |
+
# Model Description
|
29 |
|
30 |
scVI model trained on synthetic IID data and uploaded with the minified data.
|
31 |
|
32 |
+
# Model Properties
|
33 |
+
|
34 |
+
We provide here key parameters used to setup and train the model.
|
35 |
+
|
36 |
+
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
37 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
38 |
+
scvi-tools documentation for details. -->
|
39 |
+
**Training data url**: N/A
|
40 |
|
41 |
+
<details>
|
42 |
+
<summary><strong>Model Parameters</strong></summary>
|
43 |
|
44 |
+
These provide the settings to setup the original model:
|
45 |
```json
|
46 |
{
|
47 |
"n_hidden": 128,
|
|
|
54 |
}
|
55 |
```
|
56 |
|
57 |
+
</details>
|
58 |
+
|
59 |
+
<details>
|
60 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
61 |
+
Arguments passed to setup_anndata of the original model:
|
62 |
```json
|
63 |
{
|
64 |
"layer": null,
|
|
|
70 |
}
|
71 |
```
|
72 |
|
73 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
<details>
|
76 |
+
<summary><strong>Data Registry</strong></summary>
|
77 |
+
Registry elements for AnnData manager:
|
78 |
| Registry Key | scvi-tools Location |
|
79 |
|-------------------|--------------------------------------|
|
80 |
| X | adata.X |
|
|
|
85 |
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
86 |
| observed_lib_size | adata.obs['observed_lib_size'] |
|
87 |
|
88 |
+
- **Data is Minified**: True
|
89 |
|
90 |
+
</details>
|
91 |
|
92 |
+
<details>
|
93 |
+
<summary><strong>Summary Statistics</strong></summary>
|
94 |
+
| Summary Stat Key | Value |
|
95 |
+
|--------------------------|-------|
|
96 |
+
| n_batch | 1 |
|
97 |
+
| n_cells | 400 |
|
98 |
+
| n_extra_categorical_covs | 0 |
|
99 |
+
| n_extra_continuous_covs | 0 |
|
100 |
+
| n_labels | 1 |
|
101 |
+
| n_latent_qzm | 10 |
|
102 |
+
| n_latent_qzv | 10 |
|
103 |
+
| n_vars | 100 |
|
104 |
|
105 |
+
</details>
|
|
|
106 |
|
|
|
|
|
|
|
107 |
|
108 |
+
<details>
|
109 |
+
<summary><strong>Training</strong></summary>
|
110 |
|
111 |
+
If provided by the original uploader, for those interested in understanding or replicating the training process, the code is available at the link below.
|
112 |
|
113 |
+
**Training Code URL**: N/A
|
114 |
|
115 |
+
</details>
|
116 |
|
117 |
# References
|
118 |
|
119 |
+
To be added...
|