martinkim0 commited on
Commit
4977706
·
verified ·
1 Parent(s): ad68a3d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +31 -127
README.md CHANGED
@@ -6,103 +6,21 @@ tags:
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
- - scvi_version:1.2.0
10
  - anndata_version:0.11.1
11
  - modality:rna
12
- - tissue:synthetic
13
  - annotated:False
14
  ---
15
 
16
-
17
- ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
- latent space, integrate technical batches and impute dropouts.
19
- The learned low-dimensional latent representation of the data can be used for visualization and
20
- clustering.
21
-
22
- scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
23
- We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
24
-
25
- - See our original manuscript for further details of the model:
26
- [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
27
- - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
28
- to leverage pre-trained models.
29
-
30
- This model can be used for fine tuning on new data using our Arches framework:
31
- [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
32
-
33
-
34
- # Model Description
35
 
36
  scVI model trained on synthetic IID data and uploaded with the full training data.
37
 
38
- # Metrics
39
-
40
- We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
-
42
- <details>
43
- <summary><strong>Coefficient of variation</strong></summary>
44
-
45
- The cell-wise coefficient of variation summarizes how well variation between different cells is
46
- preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
- , we would recommend not to use generated data for downstream analysis, while the generated latent
48
- space might still be useful for analysis.
49
-
50
- **Cell-wise Coefficient of Variation**:
51
-
52
- | Metric | Training Value | Validation Value |
53
- |-------------------------|----------------|------------------|
54
- | Mean Absolute Error | 0.62 | 0.65 |
55
- | Pearson Correlation | 0.04 | -0.22 |
56
- | Spearman Correlation | 0.10 | -0.22 |
57
- | R² (R-Squared) | -20.13 | -16.61 |
58
-
59
- The gene-wise coefficient of variation summarizes how well variation between different genes is
60
- preserved by the generated model expression. This value is usually quite high.
61
-
62
- **Gene-wise Coefficient of Variation**:
63
-
64
- | Metric | Training Value |
65
- |-------------------------|----------------|
66
- | Mean Absolute Error | 0.69 |
67
- | Pearson Correlation | -0.04 |
68
- | Spearman Correlation | 0.04 |
69
- | R² (R-Squared) | -1.55 |
70
-
71
- </details>
72
 
73
- <details>
74
- <summary><strong>Differential expression metric</strong></summary>
75
 
76
- The differential expression metric provides a summary of the differential expression analysis
77
- between cell types or input clusters. We provide here the F1-score, Pearson Correlation
78
- Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
79
- Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
80
- cell-type.
81
-
82
- **Differential expression**:
83
-
84
- | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
85
- | --- | --- | --- | --- | --- | --- | --- | --- |
86
- | 0 | 0.00 | 0.76 | -0.05 | -0.05 | 0.53 | 0.25 | 70.00 |
87
- | 1 | 0.10 | 0.80 | -0.07 | -0.04 | 0.48 | 0.28 | 61.00 |
88
- | 2 | 0.20 | 0.77 | 0.01 | 0.01 | 0.57 | 0.28 | 60.00 |
89
- | 3 | 0.20 | 0.88 | 0.10 | 0.12 | 0.60 | 0.41 | 46.00 |
90
- | 4 | 0.10 | 0.86 | 0.03 | 0.03 | 0.46 | 0.29 | 45.00 |
91
- | 5 | 0.00 | 0.94 | -0.05 | -0.13 | 0.37 | 0.27 | 41.00 |
92
- | 6 | 0.10 | 0.96 | -0.07 | 0.03 | 0.36 | 0.21 | 31.00 |
93
- | 7 | 0.10 | 1.06 | -0.06 | -0.10 | 0.45 | 0.04 | 24.00 |
94
- | 8 | 0.00 | 1.16 | -0.02 | -0.06 | 0.40 | 0.12 | 22.00 |
95
-
96
- </details>
97
-
98
- # Model Properties
99
-
100
- We provide here key parameters used to setup and train the model.
101
-
102
- <details>
103
- <summary><strong>Model Parameters</strong></summary>
104
-
105
- These provide the settings to setup the original model:
106
  ```json
107
  {
108
  "n_hidden": 128,
@@ -115,12 +33,7 @@ These provide the settings to setup the original model:
115
  }
116
  ```
117
 
118
- </details>
119
-
120
- <details>
121
- <summary><strong>Setup Data Arguments</strong></summary>
122
-
123
- Arguments passed to setup_anndata of the original model:
124
  ```json
125
  {
126
  "layer": null,
@@ -132,53 +45,44 @@ Arguments passed to setup_anndata of the original model:
132
  }
133
  ```
134
 
135
- </details>
136
-
137
- <details>
138
- <summary><strong>Data Registry</strong></summary>
139
-
140
- Registry elements for AnnData manager:
141
- | Registry Key | scvi-tools Location |
142
- |--------------------------|--------------------------------------|
143
- | X | adata.X |
144
- | batch | adata.obs['_scvi_batch'] |
145
- | labels | adata.obs['_scvi_labels'] |
146
-
147
- - **Data is Minified**: False
148
-
149
- </details>
150
 
151
- <details>
152
- <summary><strong>Summary Statistics</strong></summary>
 
 
 
 
153
 
154
- | Summary Stat Key | Value |
155
- |--------------------------|-------|
156
- | n_batch | 1 |
157
- | n_cells | 400 |
158
- | n_extra_categorical_covs | 0 |
159
- | n_extra_continuous_covs | 0 |
160
- | n_labels | 1 |
161
- | n_vars | 100 |
162
 
163
- </details>
164
 
 
165
 
166
- <details>
167
- <summary><strong>Training</strong></summary>
168
 
169
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
170
  sure to provide this field if you want users to be able to access your training data. See the
171
  scvi-tools documentation for details. -->
172
- **Training data url**: Not provided by uploader
173
 
174
- If provided by the original uploader, for those interested in understanding or replicating the
175
- training process, the code is available at the link below.
176
 
177
- **Training Code URL**: Not provided by uploader
178
 
179
- </details>
180
 
 
181
 
182
  # References
183
 
184
- scvi-tools team
 
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
+ - scvi_version:1.2.1
10
  - anndata_version:0.11.1
11
  - modality:rna
 
12
  - annotated:False
13
  ---
14
 
15
+ # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  scVI model trained on synthetic IID data and uploaded with the full training data.
18
 
19
+ # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ Many model properties are in the model tags. Some more are listed below.
 
22
 
23
+ **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ```json
25
  {
26
  "n_hidden": 128,
 
33
  }
34
  ```
35
 
36
+ **model_setup_anndata_args**:
 
 
 
 
 
37
  ```json
38
  {
39
  "layer": null,
 
45
  }
46
  ```
47
 
48
+ **model_summary_stats**:
49
+ | Summary Stat Key | Value |
50
+ |--------------------------|-------|
51
+ | n_batch | 1 |
52
+ | n_cells | 400 |
53
+ | n_extra_categorical_covs | 0 |
54
+ | n_extra_continuous_covs | 0 |
55
+ | n_labels | 1 |
56
+ | n_vars | 100 |
 
 
 
 
 
 
57
 
58
+ **model_data_registry**:
59
+ | Registry Key | scvi-tools Location |
60
+ |--------------|---------------------------|
61
+ | X | adata.X |
62
+ | batch | adata.obs['_scvi_batch'] |
63
+ | labels | adata.obs['_scvi_labels'] |
64
 
65
+ **model_parent_module**: scvi.model
 
 
 
 
 
 
 
66
 
67
+ **data_is_minified**: False
68
 
69
+ # Training data
70
 
71
+ This is an optional link to where the training data is stored if it is too large
72
+ to host on the huggingface Model hub.
73
 
74
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
75
  sure to provide this field if you want users to be able to access your training data. See the
76
  scvi-tools documentation for details. -->
 
77
 
78
+ Training data url: N/A
 
79
 
80
+ # Training code
81
 
82
+ This is an optional link to the code used to train the model.
83
 
84
+ Training code url: N/A
85
 
86
  # References
87
 
88
+ To be added...