martinkim0
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -6,103 +6,21 @@ tags:
|
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCVI
|
9 |
-
- scvi_version:1.2.
|
10 |
- anndata_version:0.11.1
|
11 |
- modality:rna
|
12 |
-
- tissue:synthetic
|
13 |
- annotated:False
|
14 |
---
|
15 |
|
16 |
-
|
17 |
-
ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
|
18 |
-
latent space, integrate technical batches and impute dropouts.
|
19 |
-
The learned low-dimensional latent representation of the data can be used for visualization and
|
20 |
-
clustering.
|
21 |
-
|
22 |
-
scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
|
23 |
-
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
|
24 |
-
|
25 |
-
- See our original manuscript for further details of the model:
|
26 |
-
[scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
|
27 |
-
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
|
28 |
-
to leverage pre-trained models.
|
29 |
-
|
30 |
-
This model can be used for fine tuning on new data using our Arches framework:
|
31 |
-
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
32 |
-
|
33 |
-
|
34 |
-
# Model Description
|
35 |
|
36 |
scVI model trained on synthetic IID data and uploaded with the full training data.
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
41 |
-
|
42 |
-
<details>
|
43 |
-
<summary><strong>Coefficient of variation</strong></summary>
|
44 |
-
|
45 |
-
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
46 |
-
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
47 |
-
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
48 |
-
space might still be useful for analysis.
|
49 |
-
|
50 |
-
**Cell-wise Coefficient of Variation**:
|
51 |
-
|
52 |
-
| Metric | Training Value | Validation Value |
|
53 |
-
|-------------------------|----------------|------------------|
|
54 |
-
| Mean Absolute Error | 0.62 | 0.65 |
|
55 |
-
| Pearson Correlation | 0.04 | -0.22 |
|
56 |
-
| Spearman Correlation | 0.10 | -0.22 |
|
57 |
-
| R² (R-Squared) | -20.13 | -16.61 |
|
58 |
-
|
59 |
-
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
60 |
-
preserved by the generated model expression. This value is usually quite high.
|
61 |
-
|
62 |
-
**Gene-wise Coefficient of Variation**:
|
63 |
-
|
64 |
-
| Metric | Training Value |
|
65 |
-
|-------------------------|----------------|
|
66 |
-
| Mean Absolute Error | 0.69 |
|
67 |
-
| Pearson Correlation | -0.04 |
|
68 |
-
| Spearman Correlation | 0.04 |
|
69 |
-
| R² (R-Squared) | -1.55 |
|
70 |
-
|
71 |
-
</details>
|
72 |
|
73 |
-
|
74 |
-
<summary><strong>Differential expression metric</strong></summary>
|
75 |
|
76 |
-
|
77 |
-
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
78 |
-
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
79 |
-
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
80 |
-
cell-type.
|
81 |
-
|
82 |
-
**Differential expression**:
|
83 |
-
|
84 |
-
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
85 |
-
| --- | --- | --- | --- | --- | --- | --- | --- |
|
86 |
-
| 0 | 0.00 | 0.76 | -0.05 | -0.05 | 0.53 | 0.25 | 70.00 |
|
87 |
-
| 1 | 0.10 | 0.80 | -0.07 | -0.04 | 0.48 | 0.28 | 61.00 |
|
88 |
-
| 2 | 0.20 | 0.77 | 0.01 | 0.01 | 0.57 | 0.28 | 60.00 |
|
89 |
-
| 3 | 0.20 | 0.88 | 0.10 | 0.12 | 0.60 | 0.41 | 46.00 |
|
90 |
-
| 4 | 0.10 | 0.86 | 0.03 | 0.03 | 0.46 | 0.29 | 45.00 |
|
91 |
-
| 5 | 0.00 | 0.94 | -0.05 | -0.13 | 0.37 | 0.27 | 41.00 |
|
92 |
-
| 6 | 0.10 | 0.96 | -0.07 | 0.03 | 0.36 | 0.21 | 31.00 |
|
93 |
-
| 7 | 0.10 | 1.06 | -0.06 | -0.10 | 0.45 | 0.04 | 24.00 |
|
94 |
-
| 8 | 0.00 | 1.16 | -0.02 | -0.06 | 0.40 | 0.12 | 22.00 |
|
95 |
-
|
96 |
-
</details>
|
97 |
-
|
98 |
-
# Model Properties
|
99 |
-
|
100 |
-
We provide here key parameters used to setup and train the model.
|
101 |
-
|
102 |
-
<details>
|
103 |
-
<summary><strong>Model Parameters</strong></summary>
|
104 |
-
|
105 |
-
These provide the settings to setup the original model:
|
106 |
```json
|
107 |
{
|
108 |
"n_hidden": 128,
|
@@ -115,12 +33,7 @@ These provide the settings to setup the original model:
|
|
115 |
}
|
116 |
```
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
<details>
|
121 |
-
<summary><strong>Setup Data Arguments</strong></summary>
|
122 |
-
|
123 |
-
Arguments passed to setup_anndata of the original model:
|
124 |
```json
|
125 |
{
|
126 |
"layer": null,
|
@@ -132,53 +45,44 @@ Arguments passed to setup_anndata of the original model:
|
|
132 |
}
|
133 |
```
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
142 |
-
|
143 |
-
|
|
144 |
-
| batch | adata.obs['_scvi_batch'] |
|
145 |
-
| labels | adata.obs['_scvi_labels'] |
|
146 |
-
|
147 |
-
- **Data is Minified**: False
|
148 |
-
|
149 |
-
</details>
|
150 |
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|--------------------------|-------|
|
156 |
-
| n_batch | 1 |
|
157 |
-
| n_cells | 400 |
|
158 |
-
| n_extra_categorical_covs | 0 |
|
159 |
-
| n_extra_continuous_covs | 0 |
|
160 |
-
| n_labels | 1 |
|
161 |
-
| n_vars | 100 |
|
162 |
|
163 |
-
|
164 |
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
|
169 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
170 |
sure to provide this field if you want users to be able to access your training data. See the
|
171 |
scvi-tools documentation for details. -->
|
172 |
-
**Training data url**: Not provided by uploader
|
173 |
|
174 |
-
|
175 |
-
training process, the code is available at the link below.
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
|
|
181 |
|
182 |
# References
|
183 |
|
184 |
-
|
|
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCVI
|
9 |
+
- scvi_version:1.2.1
|
10 |
- anndata_version:0.11.1
|
11 |
- modality:rna
|
|
|
12 |
- annotated:False
|
13 |
---
|
14 |
|
15 |
+
# Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
scVI model trained on synthetic IID data and uploaded with the full training data.
|
18 |
|
19 |
+
# Model properties
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
Many model properties are in the model tags. Some more are listed below.
|
|
|
22 |
|
23 |
+
**model_init_params**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
```json
|
25 |
{
|
26 |
"n_hidden": 128,
|
|
|
33 |
}
|
34 |
```
|
35 |
|
36 |
+
**model_setup_anndata_args**:
|
|
|
|
|
|
|
|
|
|
|
37 |
```json
|
38 |
{
|
39 |
"layer": null,
|
|
|
45 |
}
|
46 |
```
|
47 |
|
48 |
+
**model_summary_stats**:
|
49 |
+
| Summary Stat Key | Value |
|
50 |
+
|--------------------------|-------|
|
51 |
+
| n_batch | 1 |
|
52 |
+
| n_cells | 400 |
|
53 |
+
| n_extra_categorical_covs | 0 |
|
54 |
+
| n_extra_continuous_covs | 0 |
|
55 |
+
| n_labels | 1 |
|
56 |
+
| n_vars | 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
**model_data_registry**:
|
59 |
+
| Registry Key | scvi-tools Location |
|
60 |
+
|--------------|---------------------------|
|
61 |
+
| X | adata.X |
|
62 |
+
| batch | adata.obs['_scvi_batch'] |
|
63 |
+
| labels | adata.obs['_scvi_labels'] |
|
64 |
|
65 |
+
**model_parent_module**: scvi.model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
**data_is_minified**: False
|
68 |
|
69 |
+
# Training data
|
70 |
|
71 |
+
This is an optional link to where the training data is stored if it is too large
|
72 |
+
to host on the huggingface Model hub.
|
73 |
|
74 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
75 |
sure to provide this field if you want users to be able to access your training data. See the
|
76 |
scvi-tools documentation for details. -->
|
|
|
77 |
|
78 |
+
Training data url: N/A
|
|
|
79 |
|
80 |
+
# Training code
|
81 |
|
82 |
+
This is an optional link to the code used to train the model.
|
83 |
|
84 |
+
Training code url: N/A
|
85 |
|
86 |
# References
|
87 |
|
88 |
+
To be added...
|