mochuan zhan commited on
Commit
149f9ea
·
1 Parent(s): 0cf2f9c

initial commit from desktop

Browse files
Files changed (3) hide show
  1. README.md +1 -0
  2. vit.py +69 -0
  3. vit_model.pth +3 -0
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ This is a MNIST classifier based on vision transformer.
vit.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import torch.optim as optim
4
+
5
+ class ViT(nn.Module):
6
+ def __init__(self, image_size=28, patch_size=7, num_classes=10, dim=128, depth=6, heads=8, mlp_dim=256, dropout=0.1):
7
+ super(ViT, self).__init__()
8
+
9
+ assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
10
+ num_patches = (image_size // patch_size) ** 2
11
+ patch_dim = 1 * patch_size ** 2
12
+
13
+ # 定义线性层将图像分块并映射到嵌入空间
14
+ self.patch_embedding = nn.Linear(patch_dim, dim)
15
+
16
+ # 位置编码
17
+ # nn.Parameter是Pytorch中的一个类,用于将一个张量注册为模型的参数
18
+ self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
19
+
20
+ # Dropout层
21
+ self.dropout = nn.Dropout(dropout)
22
+
23
+ # Transformer编码器
24
+ # 当 batch_first=True 时,输入和输出张量的形状为 (batch_size, seq_length, feature_dim)。当 batch_first=False 时,输入和输出张量的形状为 (seq_length, batch_size, feature_dim)。
25
+ self.transformer = nn.TransformerEncoder(
26
+ nn.TransformerEncoderLayer(
27
+ d_model=dim,
28
+ nhead=heads,
29
+ dim_feedforward=mlp_dim
30
+ # batch_first=True
31
+ ),
32
+ num_layers=depth
33
+ )
34
+
35
+ # 分类头
36
+ # nn.Identity()是一个空的层,它不执行任何操作,只是返回输入
37
+ # self.to_cls_token = nn.Identity()
38
+ # self.mlp_head = nn.Linear(dim, num_classes)
39
+ self.mlp_head = nn.Sequential(
40
+ nn.LayerNorm(dim),
41
+ nn.Linear(dim, num_classes)
42
+ )
43
+
44
+ def forward(self, x):
45
+ # x shape: [batch_size, 1, 28, 28]
46
+ batch_size = x.size(0)
47
+ x = x.view(batch_size, -1, 7*7) # 将图像划分为7x7的Patch
48
+ x = self.patch_embedding(x) # [batch_size, num_patches, dim]
49
+ x += self.pos_embedding # 添加位置编码
50
+ x = self.dropout(x) # 应用Dropout
51
+
52
+ x = x.permute(1, 0, 2) # Transformer期望的输入形状:[seq_len, batch_size, embedding_dim]
53
+ x = self.transformer(x) # [序列长度, batch_size, dim]
54
+ x = x.permute(1, 0, 2) # 转回原来的形状:[batch_size, seq_len, dim]
55
+
56
+ x = x.mean(dim=1) # 对所有Patch取平均,x.mean(dim=1) 这一步是对所有 Patch 的特征向量取平均值,从而得到一个代表整个图像的全局特征向量。
57
+ x = self.mlp_head(x) # [batch_size, num_classes]
58
+ return x
59
+
60
+ # def forward(self, x):
61
+ # # x shape: (batch, 1, 28, 28)
62
+ # batch_size = x.shape[0]
63
+ # x = x.view(batch_size, -1, 7*7)
64
+ # x = self.patch_embedding(x) # (batch, num_patches, dim)
65
+ # x = x + self.pos_embedding
66
+ # x = self.transformer(x)
67
+ # x = x.mean(dim=1) # (batch, dim)
68
+ # x = self.mlp_head(x)
69
+ # return x
vit_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:223c6c32c2a9d4c274b09c35ef089b358ee7cf1729b9d939fca898db5765dcdb
3
+ size 3248655