Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2308.47 +/- 95.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ed204f5afab3a4abf84b2fe489a9f87417400f9040f44188ac8da3f3075547b
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f215df5fc10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f215df5fca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f215df5fd30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f215df5fdc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f215df5fe50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f215df5fee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f215df5ff70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f215df64040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f215df640d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f215df64160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f215df641f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f215df64280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f215df5c8d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674050606302027069,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHAwpT80wa0+NeJ5PnYLwT/2BEY/BZcYv6a6Nz54QR+/UtY9vxE/x74Gw1m+n3sbviQ6jT86eYG/YCNmPtU5GUCXU96+NutdvxHSkL7BTYq/MI+Xvx74Cj9RT5w+dhu/vv3IPL+hjMK/wG6pPl09rr/vcaE/DyGUPpXBlz4KfKI/sW+PPx3Eo7//GW89ig1jvxRST70UYIo+7Awqv++kjb5yBFY/brRBv8AFBj/5qUK+tf4/v42LQb7JQ/+9lJCZv2CadL+W0sg/mPU3P1iyMD79yDy/oYzCv8BuqT5dPa6/PLVaP49bPr/ZvGI/KwaOvlsxrr4XzS4+tnyVv/wISD/+ZGM/K/EAQI2pDD8lLZ8/w2q+v3VZIT+9/me/kTB6vvYS+j+SyR+/qblFwCjM+D5m5JM/xaElv2fT9r51udI/sJKtPyZuKD/Abqk+XT2uv2ldrD8LMJs+q4OQPqiBvD9/3ms/1/J7vPcELT8WTDK/jw+Yv5YIaru7aj691IzWPWXDoD8sMNy+jla7vg9iKECnMIa/1oBjPj3Su72tznW/96Sjv2RAJD81b+o8clumPf3IPL8mbig/wG6pPhAQPD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAe+21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeJSTuwAAAAAABPK/AAAAAN2B1bwAAAAAWQjuPwAAAABMoDi8AAAAAKS42T8AAAAAKjIoPQAAAAD1tO2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFcwvNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJf6+b0AAAAAnA3ovwAAAABcGqs9AAAAAJmM8z8AAAAAtURLPQAAAACyPPc/AAAAAKiUET4AAAAAZ+XovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGm7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXc1Q9AAAAABPi9b8AAAAA/NHUOwAAAADSGeg/AAAAAIcbzr0AAAAA4W7nPwAAAACiEUo9AAAAAEAP+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkVy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUv58uwAAAAA0Wv6/AAAAAE8A7rwAAAAAW6jtPwAAAAB2fQ2+AAAAAEKy3D8AAAAA08MQvgAAAADirPC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJysC86FM7GMAWyUTegDjAF0lEdAqkpximVJMHV9lChoBkdAnC/gAp8WsWgHTegDaAhHQKpLixagVXV1fZQoaAZHQJ3KAg7o0Q9oB03oA2gIR0CqTV5LytmudX2UKGgGR0CdkqEaESM+aAdN6ANoCEdAqk8nv6TGHnV9lChoBkdAoOThmseXA2gHTegDaAhHQKpWlJ6po9N1fZQoaAZHQJ01G+BYmsxoB03oA2gIR0CqV64zi0fHdX2UKGgGR0ChKce6I3zdaAdN6ANoCEdAqlmLronrp3V9lChoBkdAoMseOjqOcWgHTegDaAhHQKpbQ3R5TqB1fZQoaAZHQKBMzA+IM0BoB03oA2gIR0CqYo+uV5bAdX2UKGgGR0CgltM4T9KmaAdN6ANoCEdAqmOvgzguRXV9lChoBkdAoNvcZ75VO2gHTegDaAhHQKpli9rXUYt1fZQoaAZHQKAMRuUliSdoB03oA2gIR0CqZ2IAOrhjdX2UKGgGR0ChF88U21lYaAdN6ANoCEdAqm618b70nXV9lChoBkdAoUv7L4etCGgHTegDaAhHQKpvypx3mmt1fZQoaAZHQKA37ThHbypoB03oA2gIR0CqcaDafzz3dX2UKGgGR0ChEafzJ6ppaAdN6ANoCEdAqnNjE9+w1XV9lChoBkdAn7qwTqSowWgHTegDaAhHQKp6zeb/ffp1fZQoaAZHQKA3kVzIV/NoB03oA2gIR0Cqe/hMajvedX2UKGgGR0Cd25zfJmulaAdN6ANoCEdAqn3ymGdqcnV9lChoBkdAoHszfcer/GgHTegDaAhHQKp/t4+KTB91fZQoaAZHQJfBrarWAgBoB03oA2gIR0CqhwJxWDHwdX2UKGgGR0CetGsDGLk0aAdN6ANoCEdAqoghcVxjrnV9lChoBkdAmC9R11W8y2gHTegDaAhHQKqKAKYzBRB1fZQoaAZHQJyjvViF0xNoB03oA2gIR0Cqi9O5avA5dX2UKGgGR0CcNSGN70FsaAdN6ANoCEdAqpMnuE25x3V9lChoBkdAoETVNrTH82gHTegDaAhHQKqURX7Lt/p1fZQoaAZHQKAxLCiyprFoB03oA2gIR0CqliH1e0HAdX2UKGgGR0CgdPZflZHNaAdN6ANoCEdAqpfnSH/LknV9lChoBkdAn/6r0e2d/mgHTegDaAhHQKqfV0KZ2IR1fZQoaAZHQJ71HcDbJwNoB03oA2gIR0CqoHIna37UdX2UKGgGR0CdSyYSg5BDaAdN6ANoCEdAqqJJbY9PlHV9lChoBkdAnrRhi5NGmWgHTegDaAhHQKqkBQrMC911fZQoaAZHQJ/15XA/LTxoB03oA2gIR0Cqq4jEWIoFdX2UKGgGR0CggQZ6Uqx1aAdN6ANoCEdAqqymiBXjl3V9lChoBkdAoIpIv6CUYGgHTegDaAhHQKqubZEDyOJ1fZQoaAZHQKDn/l/YraxoB03oA2gIR0CqsDZ2pyZKdX2UKGgGR0CgWS9hAnlXaAdN6ANoCEdAqriSJXQtz3V9lChoBkdAnwPmSIP9UGgHTegDaAhHQKq5vURWcSZ1fZQoaAZHQJ+RxNnGsFNoB03oA2gIR0Cqu5uhbnoxdX2UKGgGR0Cgj6pr1uiwaAdN6ANoCEdAqr1qTdLxqnV9lChoBkdAnMVWRaHKwWgHTegDaAhHQKrE2zoEB8x1fZQoaAZHQJ5WYeo1k2BoB03oA2gIR0CqxgU1AJLNdX2UKGgGR0Ccl417Y02taAdN6ANoCEdAqsfWtEG7jHV9lChoBkdAniBJudf9gmgHTegDaAhHQKrJnfNRm9R1fZQoaAZHQJ7oXTEzfrNoB03oA2gIR0Cq0S+Vkc0cdX2UKGgGR0CgVJtzbN8maAdN6ANoCEdAqtJHLDAJs3V9lChoBkdAoD5qnJkoW2gHTegDaAhHQKrUHDIBBAx1fZQoaAZHQKFa++X7cfxoB03oA2gIR0Cq1eGHP/rCdX2UKGgGR0Cfzer/sE7oaAdN6ANoCEdAqt18LjPv8nV9lChoBkdAoNUO4kNWl2gHTegDaAhHQKremG5+Ytx1fZQoaAZHQKBS9SmZVn5oB03oA2gIR0Cq4HZHmRvFdX2UKGgGR0ChJIOHvc8DaAdN6ANoCEdAquI9XRw6yXV9lChoBkdAne/OpGWldmgHTegDaAhHQKrp2GGEf1Z1fZQoaAZHQJ8gnHFPznRoB03oA2gIR0Cq6wKEOAiFdX2UKGgGR0Ce/qXjU/fPaAdN6ANoCEdAquzb+vQnhXV9lChoBkdAn+mgjY7JXGgHTegDaAhHQKruq5q/M4d1fZQoaAZHQKAPm9Net0VoB03oA2gIR0Cq9iRWT5fudX2UKGgGR0CfYy6Vt4zKaAdN6ANoCEdAqvdG/L1VYXV9lChoBkdAnpJJ5E+gUWgHTegDaAhHQKr5Nin5zo51fZQoaAZHQKBNAfdyksVoB03oA2gIR0Cq+v92ovSMdX2UKGgGR0CcxoLdepn6aAdN6ANoCEdAqwKnvv0AcXV9lChoBkdAoEiktK7I1mgHTegDaAhHQKsDwhLXcxl1fZQoaAZHQJ5cEoQWepZoB03oA2gIR0CrBaV6Vt4zdX2UKGgGR0Ccqs3VkMCtaAdN6ANoCEdAqwd45WBBiXV9lChoBkdAnnaTDwYtQWgHTegDaAhHQKsO2371qWV1fZQoaAZHQJoRm4H5aeRoB03oA2gIR0CrD/UKJEYwdX2UKGgGR0CfC1E5QxetaAdN6ANoCEdAqxHPhsImgXV9lChoBkdAoB0hN7BwdmgHTegDaAhHQKsToQjD8+B1fZQoaAZHQJ/vTKW9lEtoB03oA2gIR0CrGxJfhMrVdX2UKGgGR0ChcQqubI91aAdN6ANoCEdAqxwn6XSjQHV9lChoBkdAnnp+iBXjl2gHTegDaAhHQKseDJQtSQ51fZQoaAZHQKCK1y9VWCFoB03oA2gIR0CrH9Pa+N96dX2UKGgGR0CgsBBGH58CaAdN6ANoCEdAqydBo/Rmb3V9lChoBkdAnzFIQarFO2gHTegDaAhHQKsobedCmdl1fZQoaAZHQKCjYK1og3doB03oA2gIR0CrKk81O0swdX2UKGgGR0ChhbvXCj1xaAdN6ANoCEdAqyxjDMvAXXV9lChoBkdAoTjSOJcgQ2gHTegDaAhHQKs0Usrd30R1fZQoaAZHQKBgNK4hEBtoB03oA2gIR0CrNXYpc5bRdX2UKGgGR0CgnP7fxc3VaAdN6ANoCEdAqzdgI0IkaHV9lChoBkdAn6BZIQOFxmgHTegDaAhHQKs5MJvYODt1fZQoaAZHQJ+FlXFLnLdoB03oA2gIR0CrQKly7wrldX2UKGgGR0CdmXrTpgTiaAdN6ANoCEdAq0HKXMQmNXV9lChoBkdAmUtxh+fAbmgHTegDaAhHQKtDo6NEPUd1fZQoaAZHQKDQdekYXO5oB03oA2gIR0CrRWi1qnFYdX2UKGgGR0CdwuND+irUaAdN6ANoCEdAq0zhG8VYZHV9lChoBkdAnXgzUZvUBmgHTegDaAhHQKtN+S7oSth1fZQoaAZHQJyAvi0fHPxoB03oA2gIR0CrT9i1AqusdX2UKGgGR0CgC40t7KJVaAdN6ANoCEdAq1GZa9sabXV9lChoBkdAoJW6oddVvWgHTegDaAhHQKtZCrH2h7F1fZQoaAZHQJoxMN6PbPBoB03oA2gIR0CrWjBO58SgdX2UKGgGR0CgzWnrQgLaaAdN6ANoCEdAq1wIn2Iwd3V9lChoBkdAoIv8tXgccWgHTegDaAhHQKtdzyVfNRp1fZQoaAZHQKGEa2a2F39oB03oA2gIR0CrZUmnn+yadX2UKGgGR0CiYgYukDZEaAdN6ANoCEdAq2Zil54W13V9lChoBkdAogY7pgTh52gHTegDaAhHQKtoP71qWTp1fZQoaAZHQKHP+71ZkkNoB03oA2gIR0Craf+Ad4mkdX2UKGgGR0Ciog7W/ag3aAdN6ANoCEdAq3F9utOmBXV9lChoBkdAoh7srI5o5GgHTegDaAhHQKtyljjrAxl1fZQoaAZHQKJw9Y3eenRoB03oA2gIR0CrdHMTN+spdX2UKGgGR0CiIC+i8FpxaAdN6ANoCEdAq3ZFMqSX+nVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db8693a8ccd7d6370b7da32db755f527049dcf9e061586415f9bb7ad3d66d6b8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb4833bda0ebb71c9545432b145d8ea8198aef3f1994e7b7f4df16087d08ac36
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f215df5fc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f215df5fca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f215df5fd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f215df5fdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f215df5fe50>", "forward": "<function ActorCriticPolicy.forward at 0x7f215df5fee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f215df5ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f215df64040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f215df640d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f215df64160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f215df641f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f215df64280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f215df5c8d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674050606302027069, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHAwpT80wa0+NeJ5PnYLwT/2BEY/BZcYv6a6Nz54QR+/UtY9vxE/x74Gw1m+n3sbviQ6jT86eYG/YCNmPtU5GUCXU96+NutdvxHSkL7BTYq/MI+Xvx74Cj9RT5w+dhu/vv3IPL+hjMK/wG6pPl09rr/vcaE/DyGUPpXBlz4KfKI/sW+PPx3Eo7//GW89ig1jvxRST70UYIo+7Awqv++kjb5yBFY/brRBv8AFBj/5qUK+tf4/v42LQb7JQ/+9lJCZv2CadL+W0sg/mPU3P1iyMD79yDy/oYzCv8BuqT5dPa6/PLVaP49bPr/ZvGI/KwaOvlsxrr4XzS4+tnyVv/wISD/+ZGM/K/EAQI2pDD8lLZ8/w2q+v3VZIT+9/me/kTB6vvYS+j+SyR+/qblFwCjM+D5m5JM/xaElv2fT9r51udI/sJKtPyZuKD/Abqk+XT2uv2ldrD8LMJs+q4OQPqiBvD9/3ms/1/J7vPcELT8WTDK/jw+Yv5YIaru7aj691IzWPWXDoD8sMNy+jla7vg9iKECnMIa/1oBjPj3Su72tznW/96Sjv2RAJD81b+o8clumPf3IPL8mbig/wG6pPhAQPD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAe+21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeJSTuwAAAAAABPK/AAAAAN2B1bwAAAAAWQjuPwAAAABMoDi8AAAAAKS42T8AAAAAKjIoPQAAAAD1tO2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFcwvNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJf6+b0AAAAAnA3ovwAAAABcGqs9AAAAAJmM8z8AAAAAtURLPQAAAACyPPc/AAAAAKiUET4AAAAAZ+XovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGm7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXc1Q9AAAAABPi9b8AAAAA/NHUOwAAAADSGeg/AAAAAIcbzr0AAAAA4W7nPwAAAACiEUo9AAAAAEAP+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkVy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUv58uwAAAAA0Wv6/AAAAAE8A7rwAAAAAW6jtPwAAAAB2fQ2+AAAAAEKy3D8AAAAA08MQvgAAAADirPC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJysC86FM7GMAWyUTegDjAF0lEdAqkpximVJMHV9lChoBkdAnC/gAp8WsWgHTegDaAhHQKpLixagVXV1fZQoaAZHQJ3KAg7o0Q9oB03oA2gIR0CqTV5LytmudX2UKGgGR0CdkqEaESM+aAdN6ANoCEdAqk8nv6TGHnV9lChoBkdAoOThmseXA2gHTegDaAhHQKpWlJ6po9N1fZQoaAZHQJ01G+BYmsxoB03oA2gIR0CqV64zi0fHdX2UKGgGR0ChKce6I3zdaAdN6ANoCEdAqlmLronrp3V9lChoBkdAoMseOjqOcWgHTegDaAhHQKpbQ3R5TqB1fZQoaAZHQKBMzA+IM0BoB03oA2gIR0CqYo+uV5bAdX2UKGgGR0CgltM4T9KmaAdN6ANoCEdAqmOvgzguRXV9lChoBkdAoNvcZ75VO2gHTegDaAhHQKpli9rXUYt1fZQoaAZHQKAMRuUliSdoB03oA2gIR0CqZ2IAOrhjdX2UKGgGR0ChF88U21lYaAdN6ANoCEdAqm618b70nXV9lChoBkdAoUv7L4etCGgHTegDaAhHQKpvypx3mmt1fZQoaAZHQKA37ThHbypoB03oA2gIR0CqcaDafzz3dX2UKGgGR0ChEafzJ6ppaAdN6ANoCEdAqnNjE9+w1XV9lChoBkdAn7qwTqSowWgHTegDaAhHQKp6zeb/ffp1fZQoaAZHQKA3kVzIV/NoB03oA2gIR0Cqe/hMajvedX2UKGgGR0Cd25zfJmulaAdN6ANoCEdAqn3ymGdqcnV9lChoBkdAoHszfcer/GgHTegDaAhHQKp/t4+KTB91fZQoaAZHQJfBrarWAgBoB03oA2gIR0CqhwJxWDHwdX2UKGgGR0CetGsDGLk0aAdN6ANoCEdAqoghcVxjrnV9lChoBkdAmC9R11W8y2gHTegDaAhHQKqKAKYzBRB1fZQoaAZHQJyjvViF0xNoB03oA2gIR0Cqi9O5avA5dX2UKGgGR0CcNSGN70FsaAdN6ANoCEdAqpMnuE25x3V9lChoBkdAoETVNrTH82gHTegDaAhHQKqURX7Lt/p1fZQoaAZHQKAxLCiyprFoB03oA2gIR0CqliH1e0HAdX2UKGgGR0CgdPZflZHNaAdN6ANoCEdAqpfnSH/LknV9lChoBkdAn/6r0e2d/mgHTegDaAhHQKqfV0KZ2IR1fZQoaAZHQJ71HcDbJwNoB03oA2gIR0CqoHIna37UdX2UKGgGR0CdSyYSg5BDaAdN6ANoCEdAqqJJbY9PlHV9lChoBkdAnrRhi5NGmWgHTegDaAhHQKqkBQrMC911fZQoaAZHQJ/15XA/LTxoB03oA2gIR0Cqq4jEWIoFdX2UKGgGR0CggQZ6Uqx1aAdN6ANoCEdAqqymiBXjl3V9lChoBkdAoIpIv6CUYGgHTegDaAhHQKqubZEDyOJ1fZQoaAZHQKDn/l/YraxoB03oA2gIR0CqsDZ2pyZKdX2UKGgGR0CgWS9hAnlXaAdN6ANoCEdAqriSJXQtz3V9lChoBkdAnwPmSIP9UGgHTegDaAhHQKq5vURWcSZ1fZQoaAZHQJ+RxNnGsFNoB03oA2gIR0Cqu5uhbnoxdX2UKGgGR0Cgj6pr1uiwaAdN6ANoCEdAqr1qTdLxqnV9lChoBkdAnMVWRaHKwWgHTegDaAhHQKrE2zoEB8x1fZQoaAZHQJ5WYeo1k2BoB03oA2gIR0CqxgU1AJLNdX2UKGgGR0Ccl417Y02taAdN6ANoCEdAqsfWtEG7jHV9lChoBkdAniBJudf9gmgHTegDaAhHQKrJnfNRm9R1fZQoaAZHQJ7oXTEzfrNoB03oA2gIR0Cq0S+Vkc0cdX2UKGgGR0CgVJtzbN8maAdN6ANoCEdAqtJHLDAJs3V9lChoBkdAoD5qnJkoW2gHTegDaAhHQKrUHDIBBAx1fZQoaAZHQKFa++X7cfxoB03oA2gIR0Cq1eGHP/rCdX2UKGgGR0Cfzer/sE7oaAdN6ANoCEdAqt18LjPv8nV9lChoBkdAoNUO4kNWl2gHTegDaAhHQKremG5+Ytx1fZQoaAZHQKBS9SmZVn5oB03oA2gIR0Cq4HZHmRvFdX2UKGgGR0ChJIOHvc8DaAdN6ANoCEdAquI9XRw6yXV9lChoBkdAne/OpGWldmgHTegDaAhHQKrp2GGEf1Z1fZQoaAZHQJ8gnHFPznRoB03oA2gIR0Cq6wKEOAiFdX2UKGgGR0Ce/qXjU/fPaAdN6ANoCEdAquzb+vQnhXV9lChoBkdAn+mgjY7JXGgHTegDaAhHQKruq5q/M4d1fZQoaAZHQKAPm9Net0VoB03oA2gIR0Cq9iRWT5fudX2UKGgGR0CfYy6Vt4zKaAdN6ANoCEdAqvdG/L1VYXV9lChoBkdAnpJJ5E+gUWgHTegDaAhHQKr5Nin5zo51fZQoaAZHQKBNAfdyksVoB03oA2gIR0Cq+v92ovSMdX2UKGgGR0CcxoLdepn6aAdN6ANoCEdAqwKnvv0AcXV9lChoBkdAoEiktK7I1mgHTegDaAhHQKsDwhLXcxl1fZQoaAZHQJ5cEoQWepZoB03oA2gIR0CrBaV6Vt4zdX2UKGgGR0Ccqs3VkMCtaAdN6ANoCEdAqwd45WBBiXV9lChoBkdAnnaTDwYtQWgHTegDaAhHQKsO2371qWV1fZQoaAZHQJoRm4H5aeRoB03oA2gIR0CrD/UKJEYwdX2UKGgGR0CfC1E5QxetaAdN6ANoCEdAqxHPhsImgXV9lChoBkdAoB0hN7BwdmgHTegDaAhHQKsToQjD8+B1fZQoaAZHQJ/vTKW9lEtoB03oA2gIR0CrGxJfhMrVdX2UKGgGR0ChcQqubI91aAdN6ANoCEdAqxwn6XSjQHV9lChoBkdAnnp+iBXjl2gHTegDaAhHQKseDJQtSQ51fZQoaAZHQKCK1y9VWCFoB03oA2gIR0CrH9Pa+N96dX2UKGgGR0CgsBBGH58CaAdN6ANoCEdAqydBo/Rmb3V9lChoBkdAnzFIQarFO2gHTegDaAhHQKsobedCmdl1fZQoaAZHQKCjYK1og3doB03oA2gIR0CrKk81O0swdX2UKGgGR0ChhbvXCj1xaAdN6ANoCEdAqyxjDMvAXXV9lChoBkdAoTjSOJcgQ2gHTegDaAhHQKs0Usrd30R1fZQoaAZHQKBgNK4hEBtoB03oA2gIR0CrNXYpc5bRdX2UKGgGR0CgnP7fxc3VaAdN6ANoCEdAqzdgI0IkaHV9lChoBkdAn6BZIQOFxmgHTegDaAhHQKs5MJvYODt1fZQoaAZHQJ+FlXFLnLdoB03oA2gIR0CrQKly7wrldX2UKGgGR0CdmXrTpgTiaAdN6ANoCEdAq0HKXMQmNXV9lChoBkdAmUtxh+fAbmgHTegDaAhHQKtDo6NEPUd1fZQoaAZHQKDQdekYXO5oB03oA2gIR0CrRWi1qnFYdX2UKGgGR0CdwuND+irUaAdN6ANoCEdAq0zhG8VYZHV9lChoBkdAnXgzUZvUBmgHTegDaAhHQKtN+S7oSth1fZQoaAZHQJyAvi0fHPxoB03oA2gIR0CrT9i1AqusdX2UKGgGR0CgC40t7KJVaAdN6ANoCEdAq1GZa9sabXV9lChoBkdAoJW6oddVvWgHTegDaAhHQKtZCrH2h7F1fZQoaAZHQJoxMN6PbPBoB03oA2gIR0CrWjBO58SgdX2UKGgGR0CgzWnrQgLaaAdN6ANoCEdAq1wIn2Iwd3V9lChoBkdAoIv8tXgccWgHTegDaAhHQKtdzyVfNRp1fZQoaAZHQKGEa2a2F39oB03oA2gIR0CrZUmnn+yadX2UKGgGR0CiYgYukDZEaAdN6ANoCEdAq2Zil54W13V9lChoBkdAogY7pgTh52gHTegDaAhHQKtoP71qWTp1fZQoaAZHQKHP+71ZkkNoB03oA2gIR0Craf+Ad4mkdX2UKGgGR0Ciog7W/ag3aAdN6ANoCEdAq3F9utOmBXV9lChoBkdAoh7srI5o5GgHTegDaAhHQKtyljjrAxl1fZQoaAZHQKJw9Y3eenRoB03oA2gIR0CrdHMTN+spdX2UKGgGR0CiIC+i8FpxaAdN6ANoCEdAq3ZFMqSX+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d667bfda6fd84fb3de14d8ac69cfc22e60eb76216bee522a44a8da4590fc2d81
|
3 |
+
size 1327857
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2308.468536232528, "std_reward": 95.03637510086054, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:01:23.958599"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:666f0ffcbffd655b1b0533b5a47e0b8e5012a2cb7ee06a4c35c958ca025e7480
|
3 |
+
size 2521
|