sdadas commited on
Commit
5784cce
1 Parent(s): e69a609

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1152 -0
README.md CHANGED
@@ -5,6 +5,1158 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  language: pl
9
  license: apache-2.0
10
  widget:
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - mteb
9
+ model-index:
10
+ - name: mmlw-roberta-large
11
+ results:
12
+ - task:
13
+ type: Clustering
14
+ dataset:
15
+ type: PL-MTEB/8tags-clustering
16
+ name: MTEB 8TagsClustering
17
+ config: default
18
+ split: test
19
+ revision: None
20
+ metrics:
21
+ - type: v_measure
22
+ value: 31.16472823814849
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: PL-MTEB/allegro-reviews
27
+ name: MTEB AllegroReviews
28
+ config: default
29
+ split: test
30
+ revision: None
31
+ metrics:
32
+ - type: accuracy
33
+ value: 47.48508946322067
34
+ - type: f1
35
+ value: 42.33327527584009
36
+ - task:
37
+ type: Retrieval
38
+ dataset:
39
+ type: arguana-pl
40
+ name: MTEB ArguAna-PL
41
+ config: default
42
+ split: test
43
+ revision: None
44
+ metrics:
45
+ - type: map_at_1
46
+ value: 38.834
47
+ - type: map_at_10
48
+ value: 55.22899999999999
49
+ - type: map_at_100
50
+ value: 55.791999999999994
51
+ - type: map_at_1000
52
+ value: 55.794
53
+ - type: map_at_3
54
+ value: 51.233
55
+ - type: map_at_5
56
+ value: 53.772
57
+ - type: mrr_at_1
58
+ value: 39.687
59
+ - type: mrr_at_10
60
+ value: 55.596000000000004
61
+ - type: mrr_at_100
62
+ value: 56.157000000000004
63
+ - type: mrr_at_1000
64
+ value: 56.157999999999994
65
+ - type: mrr_at_3
66
+ value: 51.66
67
+ - type: mrr_at_5
68
+ value: 54.135
69
+ - type: ndcg_at_1
70
+ value: 38.834
71
+ - type: ndcg_at_10
72
+ value: 63.402
73
+ - type: ndcg_at_100
74
+ value: 65.78
75
+ - type: ndcg_at_1000
76
+ value: 65.816
77
+ - type: ndcg_at_3
78
+ value: 55.349000000000004
79
+ - type: ndcg_at_5
80
+ value: 59.892
81
+ - type: precision_at_1
82
+ value: 38.834
83
+ - type: precision_at_10
84
+ value: 8.905000000000001
85
+ - type: precision_at_100
86
+ value: 0.9939999999999999
87
+ - type: precision_at_1000
88
+ value: 0.1
89
+ - type: precision_at_3
90
+ value: 22.428
91
+ - type: precision_at_5
92
+ value: 15.647
93
+ - type: recall_at_1
94
+ value: 38.834
95
+ - type: recall_at_10
96
+ value: 89.047
97
+ - type: recall_at_100
98
+ value: 99.36
99
+ - type: recall_at_1000
100
+ value: 99.644
101
+ - type: recall_at_3
102
+ value: 67.283
103
+ - type: recall_at_5
104
+ value: 78.236
105
+ - task:
106
+ type: Classification
107
+ dataset:
108
+ type: PL-MTEB/cbd
109
+ name: MTEB CBD
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: accuracy
115
+ value: 69.33
116
+ - type: ap
117
+ value: 22.972409521444508
118
+ - type: f1
119
+ value: 58.91072163784952
120
+ - task:
121
+ type: PairClassification
122
+ dataset:
123
+ type: PL-MTEB/cdsce-pairclassification
124
+ name: MTEB CDSC-E
125
+ config: default
126
+ split: test
127
+ revision: None
128
+ metrics:
129
+ - type: cos_sim_accuracy
130
+ value: 89.8
131
+ - type: cos_sim_ap
132
+ value: 79.87039801032493
133
+ - type: cos_sim_f1
134
+ value: 68.53932584269663
135
+ - type: cos_sim_precision
136
+ value: 73.49397590361446
137
+ - type: cos_sim_recall
138
+ value: 64.21052631578948
139
+ - type: dot_accuracy
140
+ value: 86.1
141
+ - type: dot_ap
142
+ value: 63.684975861694035
143
+ - type: dot_f1
144
+ value: 63.61746361746362
145
+ - type: dot_precision
146
+ value: 52.57731958762887
147
+ - type: dot_recall
148
+ value: 80.52631578947368
149
+ - type: euclidean_accuracy
150
+ value: 89.8
151
+ - type: euclidean_ap
152
+ value: 79.7527126811392
153
+ - type: euclidean_f1
154
+ value: 68.46361185983827
155
+ - type: euclidean_precision
156
+ value: 70.1657458563536
157
+ - type: euclidean_recall
158
+ value: 66.84210526315789
159
+ - type: manhattan_accuracy
160
+ value: 89.7
161
+ - type: manhattan_ap
162
+ value: 79.64632771093657
163
+ - type: manhattan_f1
164
+ value: 68.4931506849315
165
+ - type: manhattan_precision
166
+ value: 71.42857142857143
167
+ - type: manhattan_recall
168
+ value: 65.78947368421053
169
+ - type: max_accuracy
170
+ value: 89.8
171
+ - type: max_ap
172
+ value: 79.87039801032493
173
+ - type: max_f1
174
+ value: 68.53932584269663
175
+ - task:
176
+ type: STS
177
+ dataset:
178
+ type: PL-MTEB/cdscr-sts
179
+ name: MTEB CDSC-R
180
+ config: default
181
+ split: test
182
+ revision: None
183
+ metrics:
184
+ - type: cos_sim_pearson
185
+ value: 92.1088892402831
186
+ - type: cos_sim_spearman
187
+ value: 92.54126377343101
188
+ - type: euclidean_pearson
189
+ value: 91.99022371986013
190
+ - type: euclidean_spearman
191
+ value: 92.55235973775511
192
+ - type: manhattan_pearson
193
+ value: 91.92170171331357
194
+ - type: manhattan_spearman
195
+ value: 92.47797623672449
196
+ - task:
197
+ type: Retrieval
198
+ dataset:
199
+ type: dbpedia-pl
200
+ name: MTEB DBPedia-PL
201
+ config: default
202
+ split: test
203
+ revision: None
204
+ metrics:
205
+ - type: map_at_1
206
+ value: 8.683
207
+ - type: map_at_10
208
+ value: 18.9
209
+ - type: map_at_100
210
+ value: 26.933
211
+ - type: map_at_1000
212
+ value: 28.558
213
+ - type: map_at_3
214
+ value: 13.638
215
+ - type: map_at_5
216
+ value: 15.9
217
+ - type: mrr_at_1
218
+ value: 63.74999999999999
219
+ - type: mrr_at_10
220
+ value: 73.566
221
+ - type: mrr_at_100
222
+ value: 73.817
223
+ - type: mrr_at_1000
224
+ value: 73.824
225
+ - type: mrr_at_3
226
+ value: 71.875
227
+ - type: mrr_at_5
228
+ value: 73.2
229
+ - type: ndcg_at_1
230
+ value: 53.125
231
+ - type: ndcg_at_10
232
+ value: 40.271
233
+ - type: ndcg_at_100
234
+ value: 45.51
235
+ - type: ndcg_at_1000
236
+ value: 52.968
237
+ - type: ndcg_at_3
238
+ value: 45.122
239
+ - type: ndcg_at_5
240
+ value: 42.306
241
+ - type: precision_at_1
242
+ value: 63.74999999999999
243
+ - type: precision_at_10
244
+ value: 31.55
245
+ - type: precision_at_100
246
+ value: 10.440000000000001
247
+ - type: precision_at_1000
248
+ value: 2.01
249
+ - type: precision_at_3
250
+ value: 48.333
251
+ - type: precision_at_5
252
+ value: 40.5
253
+ - type: recall_at_1
254
+ value: 8.683
255
+ - type: recall_at_10
256
+ value: 24.63
257
+ - type: recall_at_100
258
+ value: 51.762
259
+ - type: recall_at_1000
260
+ value: 75.64999999999999
261
+ - type: recall_at_3
262
+ value: 15.136
263
+ - type: recall_at_5
264
+ value: 18.678
265
+ - task:
266
+ type: Retrieval
267
+ dataset:
268
+ type: fiqa-pl
269
+ name: MTEB FiQA-PL
270
+ config: default
271
+ split: test
272
+ revision: None
273
+ metrics:
274
+ - type: map_at_1
275
+ value: 19.872999999999998
276
+ - type: map_at_10
277
+ value: 32.923
278
+ - type: map_at_100
279
+ value: 34.819
280
+ - type: map_at_1000
281
+ value: 34.99
282
+ - type: map_at_3
283
+ value: 28.500999999999998
284
+ - type: map_at_5
285
+ value: 31.087999999999997
286
+ - type: mrr_at_1
287
+ value: 40.432
288
+ - type: mrr_at_10
289
+ value: 49.242999999999995
290
+ - type: mrr_at_100
291
+ value: 50.014
292
+ - type: mrr_at_1000
293
+ value: 50.05500000000001
294
+ - type: mrr_at_3
295
+ value: 47.144999999999996
296
+ - type: mrr_at_5
297
+ value: 48.171
298
+ - type: ndcg_at_1
299
+ value: 40.586
300
+ - type: ndcg_at_10
301
+ value: 40.887
302
+ - type: ndcg_at_100
303
+ value: 47.701
304
+ - type: ndcg_at_1000
305
+ value: 50.624
306
+ - type: ndcg_at_3
307
+ value: 37.143
308
+ - type: ndcg_at_5
309
+ value: 38.329
310
+ - type: precision_at_1
311
+ value: 40.586
312
+ - type: precision_at_10
313
+ value: 11.497
314
+ - type: precision_at_100
315
+ value: 1.838
316
+ - type: precision_at_1000
317
+ value: 0.23700000000000002
318
+ - type: precision_at_3
319
+ value: 25.0
320
+ - type: precision_at_5
321
+ value: 18.549
322
+ - type: recall_at_1
323
+ value: 19.872999999999998
324
+ - type: recall_at_10
325
+ value: 48.073
326
+ - type: recall_at_100
327
+ value: 73.473
328
+ - type: recall_at_1000
329
+ value: 90.94
330
+ - type: recall_at_3
331
+ value: 33.645
332
+ - type: recall_at_5
333
+ value: 39.711
334
+ - task:
335
+ type: Retrieval
336
+ dataset:
337
+ type: hotpotqa-pl
338
+ name: MTEB HotpotQA-PL
339
+ config: default
340
+ split: test
341
+ revision: None
342
+ metrics:
343
+ - type: map_at_1
344
+ value: 39.399
345
+ - type: map_at_10
346
+ value: 62.604000000000006
347
+ - type: map_at_100
348
+ value: 63.475
349
+ - type: map_at_1000
350
+ value: 63.534
351
+ - type: map_at_3
352
+ value: 58.870999999999995
353
+ - type: map_at_5
354
+ value: 61.217
355
+ - type: mrr_at_1
356
+ value: 78.758
357
+ - type: mrr_at_10
358
+ value: 84.584
359
+ - type: mrr_at_100
360
+ value: 84.753
361
+ - type: mrr_at_1000
362
+ value: 84.759
363
+ - type: mrr_at_3
364
+ value: 83.65700000000001
365
+ - type: mrr_at_5
366
+ value: 84.283
367
+ - type: ndcg_at_1
368
+ value: 78.798
369
+ - type: ndcg_at_10
370
+ value: 71.04
371
+ - type: ndcg_at_100
372
+ value: 74.048
373
+ - type: ndcg_at_1000
374
+ value: 75.163
375
+ - type: ndcg_at_3
376
+ value: 65.862
377
+ - type: ndcg_at_5
378
+ value: 68.77600000000001
379
+ - type: precision_at_1
380
+ value: 78.798
381
+ - type: precision_at_10
382
+ value: 14.949000000000002
383
+ - type: precision_at_100
384
+ value: 1.7309999999999999
385
+ - type: precision_at_1000
386
+ value: 0.188
387
+ - type: precision_at_3
388
+ value: 42.237
389
+ - type: precision_at_5
390
+ value: 27.634999999999998
391
+ - type: recall_at_1
392
+ value: 39.399
393
+ - type: recall_at_10
394
+ value: 74.747
395
+ - type: recall_at_100
396
+ value: 86.529
397
+ - type: recall_at_1000
398
+ value: 93.849
399
+ - type: recall_at_3
400
+ value: 63.356
401
+ - type: recall_at_5
402
+ value: 69.08800000000001
403
+ - task:
404
+ type: Retrieval
405
+ dataset:
406
+ type: msmarco-pl
407
+ name: MTEB MSMARCO-PL
408
+ config: default
409
+ split: validation
410
+ revision: None
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 19.598
414
+ - type: map_at_10
415
+ value: 30.453999999999997
416
+ - type: map_at_100
417
+ value: 31.601000000000003
418
+ - type: map_at_1000
419
+ value: 31.66
420
+ - type: map_at_3
421
+ value: 27.118
422
+ - type: map_at_5
423
+ value: 28.943
424
+ - type: mrr_at_1
425
+ value: 20.1
426
+ - type: mrr_at_10
427
+ value: 30.978
428
+ - type: mrr_at_100
429
+ value: 32.057
430
+ - type: mrr_at_1000
431
+ value: 32.112
432
+ - type: mrr_at_3
433
+ value: 27.679
434
+ - type: mrr_at_5
435
+ value: 29.493000000000002
436
+ - type: ndcg_at_1
437
+ value: 20.158
438
+ - type: ndcg_at_10
439
+ value: 36.63
440
+ - type: ndcg_at_100
441
+ value: 42.291000000000004
442
+ - type: ndcg_at_1000
443
+ value: 43.828
444
+ - type: ndcg_at_3
445
+ value: 29.744999999999997
446
+ - type: ndcg_at_5
447
+ value: 33.024
448
+ - type: precision_at_1
449
+ value: 20.158
450
+ - type: precision_at_10
451
+ value: 5.811999999999999
452
+ - type: precision_at_100
453
+ value: 0.868
454
+ - type: precision_at_1000
455
+ value: 0.1
456
+ - type: precision_at_3
457
+ value: 12.689
458
+ - type: precision_at_5
459
+ value: 9.295
460
+ - type: recall_at_1
461
+ value: 19.598
462
+ - type: recall_at_10
463
+ value: 55.596999999999994
464
+ - type: recall_at_100
465
+ value: 82.143
466
+ - type: recall_at_1000
467
+ value: 94.015
468
+ - type: recall_at_3
469
+ value: 36.720000000000006
470
+ - type: recall_at_5
471
+ value: 44.606
472
+ - task:
473
+ type: Classification
474
+ dataset:
475
+ type: mteb/amazon_massive_intent
476
+ name: MTEB MassiveIntentClassification (pl)
477
+ config: pl
478
+ split: test
479
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
480
+ metrics:
481
+ - type: accuracy
482
+ value: 74.8117014122394
483
+ - type: f1
484
+ value: 72.0259730121889
485
+ - task:
486
+ type: Classification
487
+ dataset:
488
+ type: mteb/amazon_massive_scenario
489
+ name: MTEB MassiveScenarioClassification (pl)
490
+ config: pl
491
+ split: test
492
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
493
+ metrics:
494
+ - type: accuracy
495
+ value: 77.84465366509752
496
+ - type: f1
497
+ value: 77.73439218970051
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: nfcorpus-pl
502
+ name: MTEB NFCorpus-PL
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 5.604
509
+ - type: map_at_10
510
+ value: 12.684000000000001
511
+ - type: map_at_100
512
+ value: 16.274
513
+ - type: map_at_1000
514
+ value: 17.669
515
+ - type: map_at_3
516
+ value: 9.347
517
+ - type: map_at_5
518
+ value: 10.752
519
+ - type: mrr_at_1
520
+ value: 43.963
521
+ - type: mrr_at_10
522
+ value: 52.94
523
+ - type: mrr_at_100
524
+ value: 53.571000000000005
525
+ - type: mrr_at_1000
526
+ value: 53.613
527
+ - type: mrr_at_3
528
+ value: 51.032
529
+ - type: mrr_at_5
530
+ value: 52.193
531
+ - type: ndcg_at_1
532
+ value: 41.486000000000004
533
+ - type: ndcg_at_10
534
+ value: 33.937
535
+ - type: ndcg_at_100
536
+ value: 31.726
537
+ - type: ndcg_at_1000
538
+ value: 40.331
539
+ - type: ndcg_at_3
540
+ value: 39.217
541
+ - type: ndcg_at_5
542
+ value: 36.521
543
+ - type: precision_at_1
544
+ value: 43.034
545
+ - type: precision_at_10
546
+ value: 25.324999999999996
547
+ - type: precision_at_100
548
+ value: 8.022
549
+ - type: precision_at_1000
550
+ value: 2.0629999999999997
551
+ - type: precision_at_3
552
+ value: 36.945
553
+ - type: precision_at_5
554
+ value: 31.517
555
+ - type: recall_at_1
556
+ value: 5.604
557
+ - type: recall_at_10
558
+ value: 16.554
559
+ - type: recall_at_100
560
+ value: 33.113
561
+ - type: recall_at_1000
562
+ value: 62.832
563
+ - type: recall_at_3
564
+ value: 10.397
565
+ - type: recall_at_5
566
+ value: 12.629999999999999
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: nq-pl
571
+ name: MTEB NQ-PL
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 26.642
578
+ - type: map_at_10
579
+ value: 40.367999999999995
580
+ - type: map_at_100
581
+ value: 41.487
582
+ - type: map_at_1000
583
+ value: 41.528
584
+ - type: map_at_3
585
+ value: 36.292
586
+ - type: map_at_5
587
+ value: 38.548
588
+ - type: mrr_at_1
589
+ value: 30.156
590
+ - type: mrr_at_10
591
+ value: 42.853
592
+ - type: mrr_at_100
593
+ value: 43.742
594
+ - type: mrr_at_1000
595
+ value: 43.772
596
+ - type: mrr_at_3
597
+ value: 39.47
598
+ - type: mrr_at_5
599
+ value: 41.366
600
+ - type: ndcg_at_1
601
+ value: 30.214000000000002
602
+ - type: ndcg_at_10
603
+ value: 47.620000000000005
604
+ - type: ndcg_at_100
605
+ value: 52.486
606
+ - type: ndcg_at_1000
607
+ value: 53.482
608
+ - type: ndcg_at_3
609
+ value: 39.864
610
+ - type: ndcg_at_5
611
+ value: 43.645
612
+ - type: precision_at_1
613
+ value: 30.214000000000002
614
+ - type: precision_at_10
615
+ value: 8.03
616
+ - type: precision_at_100
617
+ value: 1.0739999999999998
618
+ - type: precision_at_1000
619
+ value: 0.117
620
+ - type: precision_at_3
621
+ value: 18.183
622
+ - type: precision_at_5
623
+ value: 13.105
624
+ - type: recall_at_1
625
+ value: 26.642
626
+ - type: recall_at_10
627
+ value: 67.282
628
+ - type: recall_at_100
629
+ value: 88.632
630
+ - type: recall_at_1000
631
+ value: 96.109
632
+ - type: recall_at_3
633
+ value: 47.048
634
+ - type: recall_at_5
635
+ value: 55.791000000000004
636
+ - task:
637
+ type: Classification
638
+ dataset:
639
+ type: laugustyniak/abusive-clauses-pl
640
+ name: MTEB PAC
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: accuracy
646
+ value: 64.69446857804807
647
+ - type: ap
648
+ value: 75.58028779280512
649
+ - type: f1
650
+ value: 62.3610392963539
651
+ - task:
652
+ type: PairClassification
653
+ dataset:
654
+ type: PL-MTEB/ppc-pairclassification
655
+ name: MTEB PPC
656
+ config: default
657
+ split: test
658
+ revision: None
659
+ metrics:
660
+ - type: cos_sim_accuracy
661
+ value: 88.4
662
+ - type: cos_sim_ap
663
+ value: 93.56462741831817
664
+ - type: cos_sim_f1
665
+ value: 90.73634204275535
666
+ - type: cos_sim_precision
667
+ value: 86.94992412746586
668
+ - type: cos_sim_recall
669
+ value: 94.86754966887418
670
+ - type: dot_accuracy
671
+ value: 75.3
672
+ - type: dot_ap
673
+ value: 83.06945936688015
674
+ - type: dot_f1
675
+ value: 81.50887573964496
676
+ - type: dot_precision
677
+ value: 73.66310160427807
678
+ - type: dot_recall
679
+ value: 91.22516556291392
680
+ - type: euclidean_accuracy
681
+ value: 88.8
682
+ - type: euclidean_ap
683
+ value: 93.53974198044985
684
+ - type: euclidean_f1
685
+ value: 90.87947882736157
686
+ - type: euclidean_precision
687
+ value: 89.42307692307693
688
+ - type: euclidean_recall
689
+ value: 92.3841059602649
690
+ - type: manhattan_accuracy
691
+ value: 88.8
692
+ - type: manhattan_ap
693
+ value: 93.54209967780366
694
+ - type: manhattan_f1
695
+ value: 90.85072231139645
696
+ - type: manhattan_precision
697
+ value: 88.1619937694704
698
+ - type: manhattan_recall
699
+ value: 93.70860927152319
700
+ - type: max_accuracy
701
+ value: 88.8
702
+ - type: max_ap
703
+ value: 93.56462741831817
704
+ - type: max_f1
705
+ value: 90.87947882736157
706
+ - task:
707
+ type: PairClassification
708
+ dataset:
709
+ type: PL-MTEB/psc-pairclassification
710
+ name: MTEB PSC
711
+ config: default
712
+ split: test
713
+ revision: None
714
+ metrics:
715
+ - type: cos_sim_accuracy
716
+ value: 97.03153988868274
717
+ - type: cos_sim_ap
718
+ value: 98.63208302459417
719
+ - type: cos_sim_f1
720
+ value: 95.06172839506173
721
+ - type: cos_sim_precision
722
+ value: 96.25
723
+ - type: cos_sim_recall
724
+ value: 93.90243902439023
725
+ - type: dot_accuracy
726
+ value: 86.82745825602969
727
+ - type: dot_ap
728
+ value: 83.77450133931302
729
+ - type: dot_f1
730
+ value: 79.3053545586107
731
+ - type: dot_precision
732
+ value: 75.48209366391184
733
+ - type: dot_recall
734
+ value: 83.53658536585365
735
+ - type: euclidean_accuracy
736
+ value: 97.03153988868274
737
+ - type: euclidean_ap
738
+ value: 98.80678168225653
739
+ - type: euclidean_f1
740
+ value: 95.20958083832335
741
+ - type: euclidean_precision
742
+ value: 93.52941176470588
743
+ - type: euclidean_recall
744
+ value: 96.95121951219512
745
+ - type: manhattan_accuracy
746
+ value: 97.21706864564007
747
+ - type: manhattan_ap
748
+ value: 98.82279484224186
749
+ - type: manhattan_f1
750
+ value: 95.44072948328268
751
+ - type: manhattan_precision
752
+ value: 95.15151515151516
753
+ - type: manhattan_recall
754
+ value: 95.73170731707317
755
+ - type: max_accuracy
756
+ value: 97.21706864564007
757
+ - type: max_ap
758
+ value: 98.82279484224186
759
+ - type: max_f1
760
+ value: 95.44072948328268
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ type: PL-MTEB/polemo2_in
765
+ name: MTEB PolEmo2.0-IN
766
+ config: default
767
+ split: test
768
+ revision: None
769
+ metrics:
770
+ - type: accuracy
771
+ value: 76.84210526315789
772
+ - type: f1
773
+ value: 75.49713789106988
774
+ - task:
775
+ type: Classification
776
+ dataset:
777
+ type: PL-MTEB/polemo2_out
778
+ name: MTEB PolEmo2.0-OUT
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: accuracy
784
+ value: 53.7246963562753
785
+ - type: f1
786
+ value: 43.060592194322986
787
+ - task:
788
+ type: Retrieval
789
+ dataset:
790
+ type: quora-pl
791
+ name: MTEB Quora-PL
792
+ config: default
793
+ split: test
794
+ revision: None
795
+ metrics:
796
+ - type: map_at_1
797
+ value: 67.021
798
+ - type: map_at_10
799
+ value: 81.362
800
+ - type: map_at_100
801
+ value: 82.06700000000001
802
+ - type: map_at_1000
803
+ value: 82.084
804
+ - type: map_at_3
805
+ value: 78.223
806
+ - type: map_at_5
807
+ value: 80.219
808
+ - type: mrr_at_1
809
+ value: 77.17
810
+ - type: mrr_at_10
811
+ value: 84.222
812
+ - type: mrr_at_100
813
+ value: 84.37599999999999
814
+ - type: mrr_at_1000
815
+ value: 84.379
816
+ - type: mrr_at_3
817
+ value: 83.003
818
+ - type: mrr_at_5
819
+ value: 83.834
820
+ - type: ndcg_at_1
821
+ value: 77.29
822
+ - type: ndcg_at_10
823
+ value: 85.506
824
+ - type: ndcg_at_100
825
+ value: 87.0
826
+ - type: ndcg_at_1000
827
+ value: 87.143
828
+ - type: ndcg_at_3
829
+ value: 82.17
830
+ - type: ndcg_at_5
831
+ value: 84.057
832
+ - type: precision_at_1
833
+ value: 77.29
834
+ - type: precision_at_10
835
+ value: 13.15
836
+ - type: precision_at_100
837
+ value: 1.522
838
+ - type: precision_at_1000
839
+ value: 0.156
840
+ - type: precision_at_3
841
+ value: 36.173
842
+ - type: precision_at_5
843
+ value: 23.988
844
+ - type: recall_at_1
845
+ value: 67.021
846
+ - type: recall_at_10
847
+ value: 93.943
848
+ - type: recall_at_100
849
+ value: 99.167
850
+ - type: recall_at_1000
851
+ value: 99.929
852
+ - type: recall_at_3
853
+ value: 84.55799999999999
854
+ - type: recall_at_5
855
+ value: 89.697
856
+ - task:
857
+ type: Retrieval
858
+ dataset:
859
+ type: scidocs-pl
860
+ name: MTEB SCIDOCS-PL
861
+ config: default
862
+ split: test
863
+ revision: None
864
+ metrics:
865
+ - type: map_at_1
866
+ value: 4.523
867
+ - type: map_at_10
868
+ value: 11.584
869
+ - type: map_at_100
870
+ value: 13.705
871
+ - type: map_at_1000
872
+ value: 14.038999999999998
873
+ - type: map_at_3
874
+ value: 8.187999999999999
875
+ - type: map_at_5
876
+ value: 9.922
877
+ - type: mrr_at_1
878
+ value: 22.1
879
+ - type: mrr_at_10
880
+ value: 32.946999999999996
881
+ - type: mrr_at_100
882
+ value: 34.11
883
+ - type: mrr_at_1000
884
+ value: 34.163
885
+ - type: mrr_at_3
886
+ value: 29.633
887
+ - type: mrr_at_5
888
+ value: 31.657999999999998
889
+ - type: ndcg_at_1
890
+ value: 22.2
891
+ - type: ndcg_at_10
892
+ value: 19.466
893
+ - type: ndcg_at_100
894
+ value: 27.725
895
+ - type: ndcg_at_1000
896
+ value: 33.539
897
+ - type: ndcg_at_3
898
+ value: 18.26
899
+ - type: ndcg_at_5
900
+ value: 16.265
901
+ - type: precision_at_1
902
+ value: 22.2
903
+ - type: precision_at_10
904
+ value: 10.11
905
+ - type: precision_at_100
906
+ value: 2.204
907
+ - type: precision_at_1000
908
+ value: 0.36
909
+ - type: precision_at_3
910
+ value: 17.1
911
+ - type: precision_at_5
912
+ value: 14.44
913
+ - type: recall_at_1
914
+ value: 4.523
915
+ - type: recall_at_10
916
+ value: 20.497
917
+ - type: recall_at_100
918
+ value: 44.757000000000005
919
+ - type: recall_at_1000
920
+ value: 73.14699999999999
921
+ - type: recall_at_3
922
+ value: 10.413
923
+ - type: recall_at_5
924
+ value: 14.638000000000002
925
+ - task:
926
+ type: PairClassification
927
+ dataset:
928
+ type: PL-MTEB/sicke-pl-pairclassification
929
+ name: MTEB SICK-E-PL
930
+ config: default
931
+ split: test
932
+ revision: None
933
+ metrics:
934
+ - type: cos_sim_accuracy
935
+ value: 87.4235629841011
936
+ - type: cos_sim_ap
937
+ value: 84.46531935663157
938
+ - type: cos_sim_f1
939
+ value: 77.18910963944077
940
+ - type: cos_sim_precision
941
+ value: 79.83257229832572
942
+ - type: cos_sim_recall
943
+ value: 74.71509971509973
944
+ - type: dot_accuracy
945
+ value: 81.10476966979209
946
+ - type: dot_ap
947
+ value: 71.12231750543143
948
+ - type: dot_f1
949
+ value: 68.13455657492355
950
+ - type: dot_precision
951
+ value: 59.69989281886387
952
+ - type: dot_recall
953
+ value: 79.34472934472934
954
+ - type: euclidean_accuracy
955
+ value: 87.21973094170403
956
+ - type: euclidean_ap
957
+ value: 84.33077991405355
958
+ - type: euclidean_f1
959
+ value: 76.81931132410365
960
+ - type: euclidean_precision
961
+ value: 76.57466383581033
962
+ - type: euclidean_recall
963
+ value: 77.06552706552706
964
+ - type: manhattan_accuracy
965
+ value: 87.21973094170403
966
+ - type: manhattan_ap
967
+ value: 84.35651252115137
968
+ - type: manhattan_f1
969
+ value: 76.87004481213376
970
+ - type: manhattan_precision
971
+ value: 74.48229792919172
972
+ - type: manhattan_recall
973
+ value: 79.41595441595442
974
+ - type: max_accuracy
975
+ value: 87.4235629841011
976
+ - type: max_ap
977
+ value: 84.46531935663157
978
+ - type: max_f1
979
+ value: 77.18910963944077
980
+ - task:
981
+ type: STS
982
+ dataset:
983
+ type: PL-MTEB/sickr-pl-sts
984
+ name: MTEB SICK-R-PL
985
+ config: default
986
+ split: test
987
+ revision: None
988
+ metrics:
989
+ - type: cos_sim_pearson
990
+ value: 83.05629619004273
991
+ - type: cos_sim_spearman
992
+ value: 79.90632583043678
993
+ - type: euclidean_pearson
994
+ value: 81.56426663515931
995
+ - type: euclidean_spearman
996
+ value: 80.05439220131294
997
+ - type: manhattan_pearson
998
+ value: 81.52958181013108
999
+ - type: manhattan_spearman
1000
+ value: 80.0387467163383
1001
+ - task:
1002
+ type: STS
1003
+ dataset:
1004
+ type: mteb/sts22-crosslingual-sts
1005
+ name: MTEB STS22 (pl)
1006
+ config: pl
1007
+ split: test
1008
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1009
+ metrics:
1010
+ - type: cos_sim_pearson
1011
+ value: 35.93847200513348
1012
+ - type: cos_sim_spearman
1013
+ value: 39.31543525546526
1014
+ - type: euclidean_pearson
1015
+ value: 30.19743936591465
1016
+ - type: euclidean_spearman
1017
+ value: 39.966612599252095
1018
+ - type: manhattan_pearson
1019
+ value: 30.195614462473387
1020
+ - type: manhattan_spearman
1021
+ value: 39.822552043685754
1022
+ - task:
1023
+ type: Retrieval
1024
+ dataset:
1025
+ type: scifact-pl
1026
+ name: MTEB SciFact-PL
1027
+ config: default
1028
+ split: test
1029
+ revision: None
1030
+ metrics:
1031
+ - type: map_at_1
1032
+ value: 56.05
1033
+ - type: map_at_10
1034
+ value: 65.93299999999999
1035
+ - type: map_at_100
1036
+ value: 66.571
1037
+ - type: map_at_1000
1038
+ value: 66.60000000000001
1039
+ - type: map_at_3
1040
+ value: 63.489
1041
+ - type: map_at_5
1042
+ value: 64.91799999999999
1043
+ - type: mrr_at_1
1044
+ value: 59.0
1045
+ - type: mrr_at_10
1046
+ value: 67.026
1047
+ - type: mrr_at_100
1048
+ value: 67.559
1049
+ - type: mrr_at_1000
1050
+ value: 67.586
1051
+ - type: mrr_at_3
1052
+ value: 65.444
1053
+ - type: mrr_at_5
1054
+ value: 66.278
1055
+ - type: ndcg_at_1
1056
+ value: 59.0
1057
+ - type: ndcg_at_10
1058
+ value: 70.233
1059
+ - type: ndcg_at_100
1060
+ value: 72.789
1061
+ - type: ndcg_at_1000
1062
+ value: 73.637
1063
+ - type: ndcg_at_3
1064
+ value: 66.40700000000001
1065
+ - type: ndcg_at_5
1066
+ value: 68.206
1067
+ - type: precision_at_1
1068
+ value: 59.0
1069
+ - type: precision_at_10
1070
+ value: 9.367
1071
+ - type: precision_at_100
1072
+ value: 1.06
1073
+ - type: precision_at_1000
1074
+ value: 0.11299999999999999
1075
+ - type: precision_at_3
1076
+ value: 26.222
1077
+ - type: precision_at_5
1078
+ value: 17.067
1079
+ - type: recall_at_1
1080
+ value: 56.05
1081
+ - type: recall_at_10
1082
+ value: 82.089
1083
+ - type: recall_at_100
1084
+ value: 93.167
1085
+ - type: recall_at_1000
1086
+ value: 100.0
1087
+ - type: recall_at_3
1088
+ value: 71.822
1089
+ - type: recall_at_5
1090
+ value: 76.483
1091
+ - task:
1092
+ type: Retrieval
1093
+ dataset:
1094
+ type: trec-covid-pl
1095
+ name: MTEB TRECCOVID-PL
1096
+ config: default
1097
+ split: test
1098
+ revision: None
1099
+ metrics:
1100
+ - type: map_at_1
1101
+ value: 0.21
1102
+ - type: map_at_10
1103
+ value: 1.7680000000000002
1104
+ - type: map_at_100
1105
+ value: 9.447999999999999
1106
+ - type: map_at_1000
1107
+ value: 21.728
1108
+ - type: map_at_3
1109
+ value: 0.603
1110
+ - type: map_at_5
1111
+ value: 0.9610000000000001
1112
+ - type: mrr_at_1
1113
+ value: 80.0
1114
+ - type: mrr_at_10
1115
+ value: 88.667
1116
+ - type: mrr_at_100
1117
+ value: 88.667
1118
+ - type: mrr_at_1000
1119
+ value: 88.667
1120
+ - type: mrr_at_3
1121
+ value: 87.667
1122
+ - type: mrr_at_5
1123
+ value: 88.667
1124
+ - type: ndcg_at_1
1125
+ value: 77.0
1126
+ - type: ndcg_at_10
1127
+ value: 70.814
1128
+ - type: ndcg_at_100
1129
+ value: 52.532000000000004
1130
+ - type: ndcg_at_1000
1131
+ value: 45.635999999999996
1132
+ - type: ndcg_at_3
1133
+ value: 76.542
1134
+ - type: ndcg_at_5
1135
+ value: 73.24000000000001
1136
+ - type: precision_at_1
1137
+ value: 80.0
1138
+ - type: precision_at_10
1139
+ value: 75.0
1140
+ - type: precision_at_100
1141
+ value: 53.879999999999995
1142
+ - type: precision_at_1000
1143
+ value: 20.002
1144
+ - type: precision_at_3
1145
+ value: 80.0
1146
+ - type: precision_at_5
1147
+ value: 76.4
1148
+ - type: recall_at_1
1149
+ value: 0.21
1150
+ - type: recall_at_10
1151
+ value: 2.012
1152
+ - type: recall_at_100
1153
+ value: 12.781999999999998
1154
+ - type: recall_at_1000
1155
+ value: 42.05
1156
+ - type: recall_at_3
1157
+ value: 0.644
1158
+ - type: recall_at_5
1159
+ value: 1.04
1160
  language: pl
1161
  license: apache-2.0
1162
  widget: