Update README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,1158 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
language: pl
|
9 |
license: apache-2.0
|
10 |
widget:
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- mteb
|
9 |
+
model-index:
|
10 |
+
- name: mmlw-roberta-large
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: Clustering
|
14 |
+
dataset:
|
15 |
+
type: PL-MTEB/8tags-clustering
|
16 |
+
name: MTEB 8TagsClustering
|
17 |
+
config: default
|
18 |
+
split: test
|
19 |
+
revision: None
|
20 |
+
metrics:
|
21 |
+
- type: v_measure
|
22 |
+
value: 31.16472823814849
|
23 |
+
- task:
|
24 |
+
type: Classification
|
25 |
+
dataset:
|
26 |
+
type: PL-MTEB/allegro-reviews
|
27 |
+
name: MTEB AllegroReviews
|
28 |
+
config: default
|
29 |
+
split: test
|
30 |
+
revision: None
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 47.48508946322067
|
34 |
+
- type: f1
|
35 |
+
value: 42.33327527584009
|
36 |
+
- task:
|
37 |
+
type: Retrieval
|
38 |
+
dataset:
|
39 |
+
type: arguana-pl
|
40 |
+
name: MTEB ArguAna-PL
|
41 |
+
config: default
|
42 |
+
split: test
|
43 |
+
revision: None
|
44 |
+
metrics:
|
45 |
+
- type: map_at_1
|
46 |
+
value: 38.834
|
47 |
+
- type: map_at_10
|
48 |
+
value: 55.22899999999999
|
49 |
+
- type: map_at_100
|
50 |
+
value: 55.791999999999994
|
51 |
+
- type: map_at_1000
|
52 |
+
value: 55.794
|
53 |
+
- type: map_at_3
|
54 |
+
value: 51.233
|
55 |
+
- type: map_at_5
|
56 |
+
value: 53.772
|
57 |
+
- type: mrr_at_1
|
58 |
+
value: 39.687
|
59 |
+
- type: mrr_at_10
|
60 |
+
value: 55.596000000000004
|
61 |
+
- type: mrr_at_100
|
62 |
+
value: 56.157000000000004
|
63 |
+
- type: mrr_at_1000
|
64 |
+
value: 56.157999999999994
|
65 |
+
- type: mrr_at_3
|
66 |
+
value: 51.66
|
67 |
+
- type: mrr_at_5
|
68 |
+
value: 54.135
|
69 |
+
- type: ndcg_at_1
|
70 |
+
value: 38.834
|
71 |
+
- type: ndcg_at_10
|
72 |
+
value: 63.402
|
73 |
+
- type: ndcg_at_100
|
74 |
+
value: 65.78
|
75 |
+
- type: ndcg_at_1000
|
76 |
+
value: 65.816
|
77 |
+
- type: ndcg_at_3
|
78 |
+
value: 55.349000000000004
|
79 |
+
- type: ndcg_at_5
|
80 |
+
value: 59.892
|
81 |
+
- type: precision_at_1
|
82 |
+
value: 38.834
|
83 |
+
- type: precision_at_10
|
84 |
+
value: 8.905000000000001
|
85 |
+
- type: precision_at_100
|
86 |
+
value: 0.9939999999999999
|
87 |
+
- type: precision_at_1000
|
88 |
+
value: 0.1
|
89 |
+
- type: precision_at_3
|
90 |
+
value: 22.428
|
91 |
+
- type: precision_at_5
|
92 |
+
value: 15.647
|
93 |
+
- type: recall_at_1
|
94 |
+
value: 38.834
|
95 |
+
- type: recall_at_10
|
96 |
+
value: 89.047
|
97 |
+
- type: recall_at_100
|
98 |
+
value: 99.36
|
99 |
+
- type: recall_at_1000
|
100 |
+
value: 99.644
|
101 |
+
- type: recall_at_3
|
102 |
+
value: 67.283
|
103 |
+
- type: recall_at_5
|
104 |
+
value: 78.236
|
105 |
+
- task:
|
106 |
+
type: Classification
|
107 |
+
dataset:
|
108 |
+
type: PL-MTEB/cbd
|
109 |
+
name: MTEB CBD
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: None
|
113 |
+
metrics:
|
114 |
+
- type: accuracy
|
115 |
+
value: 69.33
|
116 |
+
- type: ap
|
117 |
+
value: 22.972409521444508
|
118 |
+
- type: f1
|
119 |
+
value: 58.91072163784952
|
120 |
+
- task:
|
121 |
+
type: PairClassification
|
122 |
+
dataset:
|
123 |
+
type: PL-MTEB/cdsce-pairclassification
|
124 |
+
name: MTEB CDSC-E
|
125 |
+
config: default
|
126 |
+
split: test
|
127 |
+
revision: None
|
128 |
+
metrics:
|
129 |
+
- type: cos_sim_accuracy
|
130 |
+
value: 89.8
|
131 |
+
- type: cos_sim_ap
|
132 |
+
value: 79.87039801032493
|
133 |
+
- type: cos_sim_f1
|
134 |
+
value: 68.53932584269663
|
135 |
+
- type: cos_sim_precision
|
136 |
+
value: 73.49397590361446
|
137 |
+
- type: cos_sim_recall
|
138 |
+
value: 64.21052631578948
|
139 |
+
- type: dot_accuracy
|
140 |
+
value: 86.1
|
141 |
+
- type: dot_ap
|
142 |
+
value: 63.684975861694035
|
143 |
+
- type: dot_f1
|
144 |
+
value: 63.61746361746362
|
145 |
+
- type: dot_precision
|
146 |
+
value: 52.57731958762887
|
147 |
+
- type: dot_recall
|
148 |
+
value: 80.52631578947368
|
149 |
+
- type: euclidean_accuracy
|
150 |
+
value: 89.8
|
151 |
+
- type: euclidean_ap
|
152 |
+
value: 79.7527126811392
|
153 |
+
- type: euclidean_f1
|
154 |
+
value: 68.46361185983827
|
155 |
+
- type: euclidean_precision
|
156 |
+
value: 70.1657458563536
|
157 |
+
- type: euclidean_recall
|
158 |
+
value: 66.84210526315789
|
159 |
+
- type: manhattan_accuracy
|
160 |
+
value: 89.7
|
161 |
+
- type: manhattan_ap
|
162 |
+
value: 79.64632771093657
|
163 |
+
- type: manhattan_f1
|
164 |
+
value: 68.4931506849315
|
165 |
+
- type: manhattan_precision
|
166 |
+
value: 71.42857142857143
|
167 |
+
- type: manhattan_recall
|
168 |
+
value: 65.78947368421053
|
169 |
+
- type: max_accuracy
|
170 |
+
value: 89.8
|
171 |
+
- type: max_ap
|
172 |
+
value: 79.87039801032493
|
173 |
+
- type: max_f1
|
174 |
+
value: 68.53932584269663
|
175 |
+
- task:
|
176 |
+
type: STS
|
177 |
+
dataset:
|
178 |
+
type: PL-MTEB/cdscr-sts
|
179 |
+
name: MTEB CDSC-R
|
180 |
+
config: default
|
181 |
+
split: test
|
182 |
+
revision: None
|
183 |
+
metrics:
|
184 |
+
- type: cos_sim_pearson
|
185 |
+
value: 92.1088892402831
|
186 |
+
- type: cos_sim_spearman
|
187 |
+
value: 92.54126377343101
|
188 |
+
- type: euclidean_pearson
|
189 |
+
value: 91.99022371986013
|
190 |
+
- type: euclidean_spearman
|
191 |
+
value: 92.55235973775511
|
192 |
+
- type: manhattan_pearson
|
193 |
+
value: 91.92170171331357
|
194 |
+
- type: manhattan_spearman
|
195 |
+
value: 92.47797623672449
|
196 |
+
- task:
|
197 |
+
type: Retrieval
|
198 |
+
dataset:
|
199 |
+
type: dbpedia-pl
|
200 |
+
name: MTEB DBPedia-PL
|
201 |
+
config: default
|
202 |
+
split: test
|
203 |
+
revision: None
|
204 |
+
metrics:
|
205 |
+
- type: map_at_1
|
206 |
+
value: 8.683
|
207 |
+
- type: map_at_10
|
208 |
+
value: 18.9
|
209 |
+
- type: map_at_100
|
210 |
+
value: 26.933
|
211 |
+
- type: map_at_1000
|
212 |
+
value: 28.558
|
213 |
+
- type: map_at_3
|
214 |
+
value: 13.638
|
215 |
+
- type: map_at_5
|
216 |
+
value: 15.9
|
217 |
+
- type: mrr_at_1
|
218 |
+
value: 63.74999999999999
|
219 |
+
- type: mrr_at_10
|
220 |
+
value: 73.566
|
221 |
+
- type: mrr_at_100
|
222 |
+
value: 73.817
|
223 |
+
- type: mrr_at_1000
|
224 |
+
value: 73.824
|
225 |
+
- type: mrr_at_3
|
226 |
+
value: 71.875
|
227 |
+
- type: mrr_at_5
|
228 |
+
value: 73.2
|
229 |
+
- type: ndcg_at_1
|
230 |
+
value: 53.125
|
231 |
+
- type: ndcg_at_10
|
232 |
+
value: 40.271
|
233 |
+
- type: ndcg_at_100
|
234 |
+
value: 45.51
|
235 |
+
- type: ndcg_at_1000
|
236 |
+
value: 52.968
|
237 |
+
- type: ndcg_at_3
|
238 |
+
value: 45.122
|
239 |
+
- type: ndcg_at_5
|
240 |
+
value: 42.306
|
241 |
+
- type: precision_at_1
|
242 |
+
value: 63.74999999999999
|
243 |
+
- type: precision_at_10
|
244 |
+
value: 31.55
|
245 |
+
- type: precision_at_100
|
246 |
+
value: 10.440000000000001
|
247 |
+
- type: precision_at_1000
|
248 |
+
value: 2.01
|
249 |
+
- type: precision_at_3
|
250 |
+
value: 48.333
|
251 |
+
- type: precision_at_5
|
252 |
+
value: 40.5
|
253 |
+
- type: recall_at_1
|
254 |
+
value: 8.683
|
255 |
+
- type: recall_at_10
|
256 |
+
value: 24.63
|
257 |
+
- type: recall_at_100
|
258 |
+
value: 51.762
|
259 |
+
- type: recall_at_1000
|
260 |
+
value: 75.64999999999999
|
261 |
+
- type: recall_at_3
|
262 |
+
value: 15.136
|
263 |
+
- type: recall_at_5
|
264 |
+
value: 18.678
|
265 |
+
- task:
|
266 |
+
type: Retrieval
|
267 |
+
dataset:
|
268 |
+
type: fiqa-pl
|
269 |
+
name: MTEB FiQA-PL
|
270 |
+
config: default
|
271 |
+
split: test
|
272 |
+
revision: None
|
273 |
+
metrics:
|
274 |
+
- type: map_at_1
|
275 |
+
value: 19.872999999999998
|
276 |
+
- type: map_at_10
|
277 |
+
value: 32.923
|
278 |
+
- type: map_at_100
|
279 |
+
value: 34.819
|
280 |
+
- type: map_at_1000
|
281 |
+
value: 34.99
|
282 |
+
- type: map_at_3
|
283 |
+
value: 28.500999999999998
|
284 |
+
- type: map_at_5
|
285 |
+
value: 31.087999999999997
|
286 |
+
- type: mrr_at_1
|
287 |
+
value: 40.432
|
288 |
+
- type: mrr_at_10
|
289 |
+
value: 49.242999999999995
|
290 |
+
- type: mrr_at_100
|
291 |
+
value: 50.014
|
292 |
+
- type: mrr_at_1000
|
293 |
+
value: 50.05500000000001
|
294 |
+
- type: mrr_at_3
|
295 |
+
value: 47.144999999999996
|
296 |
+
- type: mrr_at_5
|
297 |
+
value: 48.171
|
298 |
+
- type: ndcg_at_1
|
299 |
+
value: 40.586
|
300 |
+
- type: ndcg_at_10
|
301 |
+
value: 40.887
|
302 |
+
- type: ndcg_at_100
|
303 |
+
value: 47.701
|
304 |
+
- type: ndcg_at_1000
|
305 |
+
value: 50.624
|
306 |
+
- type: ndcg_at_3
|
307 |
+
value: 37.143
|
308 |
+
- type: ndcg_at_5
|
309 |
+
value: 38.329
|
310 |
+
- type: precision_at_1
|
311 |
+
value: 40.586
|
312 |
+
- type: precision_at_10
|
313 |
+
value: 11.497
|
314 |
+
- type: precision_at_100
|
315 |
+
value: 1.838
|
316 |
+
- type: precision_at_1000
|
317 |
+
value: 0.23700000000000002
|
318 |
+
- type: precision_at_3
|
319 |
+
value: 25.0
|
320 |
+
- type: precision_at_5
|
321 |
+
value: 18.549
|
322 |
+
- type: recall_at_1
|
323 |
+
value: 19.872999999999998
|
324 |
+
- type: recall_at_10
|
325 |
+
value: 48.073
|
326 |
+
- type: recall_at_100
|
327 |
+
value: 73.473
|
328 |
+
- type: recall_at_1000
|
329 |
+
value: 90.94
|
330 |
+
- type: recall_at_3
|
331 |
+
value: 33.645
|
332 |
+
- type: recall_at_5
|
333 |
+
value: 39.711
|
334 |
+
- task:
|
335 |
+
type: Retrieval
|
336 |
+
dataset:
|
337 |
+
type: hotpotqa-pl
|
338 |
+
name: MTEB HotpotQA-PL
|
339 |
+
config: default
|
340 |
+
split: test
|
341 |
+
revision: None
|
342 |
+
metrics:
|
343 |
+
- type: map_at_1
|
344 |
+
value: 39.399
|
345 |
+
- type: map_at_10
|
346 |
+
value: 62.604000000000006
|
347 |
+
- type: map_at_100
|
348 |
+
value: 63.475
|
349 |
+
- type: map_at_1000
|
350 |
+
value: 63.534
|
351 |
+
- type: map_at_3
|
352 |
+
value: 58.870999999999995
|
353 |
+
- type: map_at_5
|
354 |
+
value: 61.217
|
355 |
+
- type: mrr_at_1
|
356 |
+
value: 78.758
|
357 |
+
- type: mrr_at_10
|
358 |
+
value: 84.584
|
359 |
+
- type: mrr_at_100
|
360 |
+
value: 84.753
|
361 |
+
- type: mrr_at_1000
|
362 |
+
value: 84.759
|
363 |
+
- type: mrr_at_3
|
364 |
+
value: 83.65700000000001
|
365 |
+
- type: mrr_at_5
|
366 |
+
value: 84.283
|
367 |
+
- type: ndcg_at_1
|
368 |
+
value: 78.798
|
369 |
+
- type: ndcg_at_10
|
370 |
+
value: 71.04
|
371 |
+
- type: ndcg_at_100
|
372 |
+
value: 74.048
|
373 |
+
- type: ndcg_at_1000
|
374 |
+
value: 75.163
|
375 |
+
- type: ndcg_at_3
|
376 |
+
value: 65.862
|
377 |
+
- type: ndcg_at_5
|
378 |
+
value: 68.77600000000001
|
379 |
+
- type: precision_at_1
|
380 |
+
value: 78.798
|
381 |
+
- type: precision_at_10
|
382 |
+
value: 14.949000000000002
|
383 |
+
- type: precision_at_100
|
384 |
+
value: 1.7309999999999999
|
385 |
+
- type: precision_at_1000
|
386 |
+
value: 0.188
|
387 |
+
- type: precision_at_3
|
388 |
+
value: 42.237
|
389 |
+
- type: precision_at_5
|
390 |
+
value: 27.634999999999998
|
391 |
+
- type: recall_at_1
|
392 |
+
value: 39.399
|
393 |
+
- type: recall_at_10
|
394 |
+
value: 74.747
|
395 |
+
- type: recall_at_100
|
396 |
+
value: 86.529
|
397 |
+
- type: recall_at_1000
|
398 |
+
value: 93.849
|
399 |
+
- type: recall_at_3
|
400 |
+
value: 63.356
|
401 |
+
- type: recall_at_5
|
402 |
+
value: 69.08800000000001
|
403 |
+
- task:
|
404 |
+
type: Retrieval
|
405 |
+
dataset:
|
406 |
+
type: msmarco-pl
|
407 |
+
name: MTEB MSMARCO-PL
|
408 |
+
config: default
|
409 |
+
split: validation
|
410 |
+
revision: None
|
411 |
+
metrics:
|
412 |
+
- type: map_at_1
|
413 |
+
value: 19.598
|
414 |
+
- type: map_at_10
|
415 |
+
value: 30.453999999999997
|
416 |
+
- type: map_at_100
|
417 |
+
value: 31.601000000000003
|
418 |
+
- type: map_at_1000
|
419 |
+
value: 31.66
|
420 |
+
- type: map_at_3
|
421 |
+
value: 27.118
|
422 |
+
- type: map_at_5
|
423 |
+
value: 28.943
|
424 |
+
- type: mrr_at_1
|
425 |
+
value: 20.1
|
426 |
+
- type: mrr_at_10
|
427 |
+
value: 30.978
|
428 |
+
- type: mrr_at_100
|
429 |
+
value: 32.057
|
430 |
+
- type: mrr_at_1000
|
431 |
+
value: 32.112
|
432 |
+
- type: mrr_at_3
|
433 |
+
value: 27.679
|
434 |
+
- type: mrr_at_5
|
435 |
+
value: 29.493000000000002
|
436 |
+
- type: ndcg_at_1
|
437 |
+
value: 20.158
|
438 |
+
- type: ndcg_at_10
|
439 |
+
value: 36.63
|
440 |
+
- type: ndcg_at_100
|
441 |
+
value: 42.291000000000004
|
442 |
+
- type: ndcg_at_1000
|
443 |
+
value: 43.828
|
444 |
+
- type: ndcg_at_3
|
445 |
+
value: 29.744999999999997
|
446 |
+
- type: ndcg_at_5
|
447 |
+
value: 33.024
|
448 |
+
- type: precision_at_1
|
449 |
+
value: 20.158
|
450 |
+
- type: precision_at_10
|
451 |
+
value: 5.811999999999999
|
452 |
+
- type: precision_at_100
|
453 |
+
value: 0.868
|
454 |
+
- type: precision_at_1000
|
455 |
+
value: 0.1
|
456 |
+
- type: precision_at_3
|
457 |
+
value: 12.689
|
458 |
+
- type: precision_at_5
|
459 |
+
value: 9.295
|
460 |
+
- type: recall_at_1
|
461 |
+
value: 19.598
|
462 |
+
- type: recall_at_10
|
463 |
+
value: 55.596999999999994
|
464 |
+
- type: recall_at_100
|
465 |
+
value: 82.143
|
466 |
+
- type: recall_at_1000
|
467 |
+
value: 94.015
|
468 |
+
- type: recall_at_3
|
469 |
+
value: 36.720000000000006
|
470 |
+
- type: recall_at_5
|
471 |
+
value: 44.606
|
472 |
+
- task:
|
473 |
+
type: Classification
|
474 |
+
dataset:
|
475 |
+
type: mteb/amazon_massive_intent
|
476 |
+
name: MTEB MassiveIntentClassification (pl)
|
477 |
+
config: pl
|
478 |
+
split: test
|
479 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
480 |
+
metrics:
|
481 |
+
- type: accuracy
|
482 |
+
value: 74.8117014122394
|
483 |
+
- type: f1
|
484 |
+
value: 72.0259730121889
|
485 |
+
- task:
|
486 |
+
type: Classification
|
487 |
+
dataset:
|
488 |
+
type: mteb/amazon_massive_scenario
|
489 |
+
name: MTEB MassiveScenarioClassification (pl)
|
490 |
+
config: pl
|
491 |
+
split: test
|
492 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
493 |
+
metrics:
|
494 |
+
- type: accuracy
|
495 |
+
value: 77.84465366509752
|
496 |
+
- type: f1
|
497 |
+
value: 77.73439218970051
|
498 |
+
- task:
|
499 |
+
type: Retrieval
|
500 |
+
dataset:
|
501 |
+
type: nfcorpus-pl
|
502 |
+
name: MTEB NFCorpus-PL
|
503 |
+
config: default
|
504 |
+
split: test
|
505 |
+
revision: None
|
506 |
+
metrics:
|
507 |
+
- type: map_at_1
|
508 |
+
value: 5.604
|
509 |
+
- type: map_at_10
|
510 |
+
value: 12.684000000000001
|
511 |
+
- type: map_at_100
|
512 |
+
value: 16.274
|
513 |
+
- type: map_at_1000
|
514 |
+
value: 17.669
|
515 |
+
- type: map_at_3
|
516 |
+
value: 9.347
|
517 |
+
- type: map_at_5
|
518 |
+
value: 10.752
|
519 |
+
- type: mrr_at_1
|
520 |
+
value: 43.963
|
521 |
+
- type: mrr_at_10
|
522 |
+
value: 52.94
|
523 |
+
- type: mrr_at_100
|
524 |
+
value: 53.571000000000005
|
525 |
+
- type: mrr_at_1000
|
526 |
+
value: 53.613
|
527 |
+
- type: mrr_at_3
|
528 |
+
value: 51.032
|
529 |
+
- type: mrr_at_5
|
530 |
+
value: 52.193
|
531 |
+
- type: ndcg_at_1
|
532 |
+
value: 41.486000000000004
|
533 |
+
- type: ndcg_at_10
|
534 |
+
value: 33.937
|
535 |
+
- type: ndcg_at_100
|
536 |
+
value: 31.726
|
537 |
+
- type: ndcg_at_1000
|
538 |
+
value: 40.331
|
539 |
+
- type: ndcg_at_3
|
540 |
+
value: 39.217
|
541 |
+
- type: ndcg_at_5
|
542 |
+
value: 36.521
|
543 |
+
- type: precision_at_1
|
544 |
+
value: 43.034
|
545 |
+
- type: precision_at_10
|
546 |
+
value: 25.324999999999996
|
547 |
+
- type: precision_at_100
|
548 |
+
value: 8.022
|
549 |
+
- type: precision_at_1000
|
550 |
+
value: 2.0629999999999997
|
551 |
+
- type: precision_at_3
|
552 |
+
value: 36.945
|
553 |
+
- type: precision_at_5
|
554 |
+
value: 31.517
|
555 |
+
- type: recall_at_1
|
556 |
+
value: 5.604
|
557 |
+
- type: recall_at_10
|
558 |
+
value: 16.554
|
559 |
+
- type: recall_at_100
|
560 |
+
value: 33.113
|
561 |
+
- type: recall_at_1000
|
562 |
+
value: 62.832
|
563 |
+
- type: recall_at_3
|
564 |
+
value: 10.397
|
565 |
+
- type: recall_at_5
|
566 |
+
value: 12.629999999999999
|
567 |
+
- task:
|
568 |
+
type: Retrieval
|
569 |
+
dataset:
|
570 |
+
type: nq-pl
|
571 |
+
name: MTEB NQ-PL
|
572 |
+
config: default
|
573 |
+
split: test
|
574 |
+
revision: None
|
575 |
+
metrics:
|
576 |
+
- type: map_at_1
|
577 |
+
value: 26.642
|
578 |
+
- type: map_at_10
|
579 |
+
value: 40.367999999999995
|
580 |
+
- type: map_at_100
|
581 |
+
value: 41.487
|
582 |
+
- type: map_at_1000
|
583 |
+
value: 41.528
|
584 |
+
- type: map_at_3
|
585 |
+
value: 36.292
|
586 |
+
- type: map_at_5
|
587 |
+
value: 38.548
|
588 |
+
- type: mrr_at_1
|
589 |
+
value: 30.156
|
590 |
+
- type: mrr_at_10
|
591 |
+
value: 42.853
|
592 |
+
- type: mrr_at_100
|
593 |
+
value: 43.742
|
594 |
+
- type: mrr_at_1000
|
595 |
+
value: 43.772
|
596 |
+
- type: mrr_at_3
|
597 |
+
value: 39.47
|
598 |
+
- type: mrr_at_5
|
599 |
+
value: 41.366
|
600 |
+
- type: ndcg_at_1
|
601 |
+
value: 30.214000000000002
|
602 |
+
- type: ndcg_at_10
|
603 |
+
value: 47.620000000000005
|
604 |
+
- type: ndcg_at_100
|
605 |
+
value: 52.486
|
606 |
+
- type: ndcg_at_1000
|
607 |
+
value: 53.482
|
608 |
+
- type: ndcg_at_3
|
609 |
+
value: 39.864
|
610 |
+
- type: ndcg_at_5
|
611 |
+
value: 43.645
|
612 |
+
- type: precision_at_1
|
613 |
+
value: 30.214000000000002
|
614 |
+
- type: precision_at_10
|
615 |
+
value: 8.03
|
616 |
+
- type: precision_at_100
|
617 |
+
value: 1.0739999999999998
|
618 |
+
- type: precision_at_1000
|
619 |
+
value: 0.117
|
620 |
+
- type: precision_at_3
|
621 |
+
value: 18.183
|
622 |
+
- type: precision_at_5
|
623 |
+
value: 13.105
|
624 |
+
- type: recall_at_1
|
625 |
+
value: 26.642
|
626 |
+
- type: recall_at_10
|
627 |
+
value: 67.282
|
628 |
+
- type: recall_at_100
|
629 |
+
value: 88.632
|
630 |
+
- type: recall_at_1000
|
631 |
+
value: 96.109
|
632 |
+
- type: recall_at_3
|
633 |
+
value: 47.048
|
634 |
+
- type: recall_at_5
|
635 |
+
value: 55.791000000000004
|
636 |
+
- task:
|
637 |
+
type: Classification
|
638 |
+
dataset:
|
639 |
+
type: laugustyniak/abusive-clauses-pl
|
640 |
+
name: MTEB PAC
|
641 |
+
config: default
|
642 |
+
split: test
|
643 |
+
revision: None
|
644 |
+
metrics:
|
645 |
+
- type: accuracy
|
646 |
+
value: 64.69446857804807
|
647 |
+
- type: ap
|
648 |
+
value: 75.58028779280512
|
649 |
+
- type: f1
|
650 |
+
value: 62.3610392963539
|
651 |
+
- task:
|
652 |
+
type: PairClassification
|
653 |
+
dataset:
|
654 |
+
type: PL-MTEB/ppc-pairclassification
|
655 |
+
name: MTEB PPC
|
656 |
+
config: default
|
657 |
+
split: test
|
658 |
+
revision: None
|
659 |
+
metrics:
|
660 |
+
- type: cos_sim_accuracy
|
661 |
+
value: 88.4
|
662 |
+
- type: cos_sim_ap
|
663 |
+
value: 93.56462741831817
|
664 |
+
- type: cos_sim_f1
|
665 |
+
value: 90.73634204275535
|
666 |
+
- type: cos_sim_precision
|
667 |
+
value: 86.94992412746586
|
668 |
+
- type: cos_sim_recall
|
669 |
+
value: 94.86754966887418
|
670 |
+
- type: dot_accuracy
|
671 |
+
value: 75.3
|
672 |
+
- type: dot_ap
|
673 |
+
value: 83.06945936688015
|
674 |
+
- type: dot_f1
|
675 |
+
value: 81.50887573964496
|
676 |
+
- type: dot_precision
|
677 |
+
value: 73.66310160427807
|
678 |
+
- type: dot_recall
|
679 |
+
value: 91.22516556291392
|
680 |
+
- type: euclidean_accuracy
|
681 |
+
value: 88.8
|
682 |
+
- type: euclidean_ap
|
683 |
+
value: 93.53974198044985
|
684 |
+
- type: euclidean_f1
|
685 |
+
value: 90.87947882736157
|
686 |
+
- type: euclidean_precision
|
687 |
+
value: 89.42307692307693
|
688 |
+
- type: euclidean_recall
|
689 |
+
value: 92.3841059602649
|
690 |
+
- type: manhattan_accuracy
|
691 |
+
value: 88.8
|
692 |
+
- type: manhattan_ap
|
693 |
+
value: 93.54209967780366
|
694 |
+
- type: manhattan_f1
|
695 |
+
value: 90.85072231139645
|
696 |
+
- type: manhattan_precision
|
697 |
+
value: 88.1619937694704
|
698 |
+
- type: manhattan_recall
|
699 |
+
value: 93.70860927152319
|
700 |
+
- type: max_accuracy
|
701 |
+
value: 88.8
|
702 |
+
- type: max_ap
|
703 |
+
value: 93.56462741831817
|
704 |
+
- type: max_f1
|
705 |
+
value: 90.87947882736157
|
706 |
+
- task:
|
707 |
+
type: PairClassification
|
708 |
+
dataset:
|
709 |
+
type: PL-MTEB/psc-pairclassification
|
710 |
+
name: MTEB PSC
|
711 |
+
config: default
|
712 |
+
split: test
|
713 |
+
revision: None
|
714 |
+
metrics:
|
715 |
+
- type: cos_sim_accuracy
|
716 |
+
value: 97.03153988868274
|
717 |
+
- type: cos_sim_ap
|
718 |
+
value: 98.63208302459417
|
719 |
+
- type: cos_sim_f1
|
720 |
+
value: 95.06172839506173
|
721 |
+
- type: cos_sim_precision
|
722 |
+
value: 96.25
|
723 |
+
- type: cos_sim_recall
|
724 |
+
value: 93.90243902439023
|
725 |
+
- type: dot_accuracy
|
726 |
+
value: 86.82745825602969
|
727 |
+
- type: dot_ap
|
728 |
+
value: 83.77450133931302
|
729 |
+
- type: dot_f1
|
730 |
+
value: 79.3053545586107
|
731 |
+
- type: dot_precision
|
732 |
+
value: 75.48209366391184
|
733 |
+
- type: dot_recall
|
734 |
+
value: 83.53658536585365
|
735 |
+
- type: euclidean_accuracy
|
736 |
+
value: 97.03153988868274
|
737 |
+
- type: euclidean_ap
|
738 |
+
value: 98.80678168225653
|
739 |
+
- type: euclidean_f1
|
740 |
+
value: 95.20958083832335
|
741 |
+
- type: euclidean_precision
|
742 |
+
value: 93.52941176470588
|
743 |
+
- type: euclidean_recall
|
744 |
+
value: 96.95121951219512
|
745 |
+
- type: manhattan_accuracy
|
746 |
+
value: 97.21706864564007
|
747 |
+
- type: manhattan_ap
|
748 |
+
value: 98.82279484224186
|
749 |
+
- type: manhattan_f1
|
750 |
+
value: 95.44072948328268
|
751 |
+
- type: manhattan_precision
|
752 |
+
value: 95.15151515151516
|
753 |
+
- type: manhattan_recall
|
754 |
+
value: 95.73170731707317
|
755 |
+
- type: max_accuracy
|
756 |
+
value: 97.21706864564007
|
757 |
+
- type: max_ap
|
758 |
+
value: 98.82279484224186
|
759 |
+
- type: max_f1
|
760 |
+
value: 95.44072948328268
|
761 |
+
- task:
|
762 |
+
type: Classification
|
763 |
+
dataset:
|
764 |
+
type: PL-MTEB/polemo2_in
|
765 |
+
name: MTEB PolEmo2.0-IN
|
766 |
+
config: default
|
767 |
+
split: test
|
768 |
+
revision: None
|
769 |
+
metrics:
|
770 |
+
- type: accuracy
|
771 |
+
value: 76.84210526315789
|
772 |
+
- type: f1
|
773 |
+
value: 75.49713789106988
|
774 |
+
- task:
|
775 |
+
type: Classification
|
776 |
+
dataset:
|
777 |
+
type: PL-MTEB/polemo2_out
|
778 |
+
name: MTEB PolEmo2.0-OUT
|
779 |
+
config: default
|
780 |
+
split: test
|
781 |
+
revision: None
|
782 |
+
metrics:
|
783 |
+
- type: accuracy
|
784 |
+
value: 53.7246963562753
|
785 |
+
- type: f1
|
786 |
+
value: 43.060592194322986
|
787 |
+
- task:
|
788 |
+
type: Retrieval
|
789 |
+
dataset:
|
790 |
+
type: quora-pl
|
791 |
+
name: MTEB Quora-PL
|
792 |
+
config: default
|
793 |
+
split: test
|
794 |
+
revision: None
|
795 |
+
metrics:
|
796 |
+
- type: map_at_1
|
797 |
+
value: 67.021
|
798 |
+
- type: map_at_10
|
799 |
+
value: 81.362
|
800 |
+
- type: map_at_100
|
801 |
+
value: 82.06700000000001
|
802 |
+
- type: map_at_1000
|
803 |
+
value: 82.084
|
804 |
+
- type: map_at_3
|
805 |
+
value: 78.223
|
806 |
+
- type: map_at_5
|
807 |
+
value: 80.219
|
808 |
+
- type: mrr_at_1
|
809 |
+
value: 77.17
|
810 |
+
- type: mrr_at_10
|
811 |
+
value: 84.222
|
812 |
+
- type: mrr_at_100
|
813 |
+
value: 84.37599999999999
|
814 |
+
- type: mrr_at_1000
|
815 |
+
value: 84.379
|
816 |
+
- type: mrr_at_3
|
817 |
+
value: 83.003
|
818 |
+
- type: mrr_at_5
|
819 |
+
value: 83.834
|
820 |
+
- type: ndcg_at_1
|
821 |
+
value: 77.29
|
822 |
+
- type: ndcg_at_10
|
823 |
+
value: 85.506
|
824 |
+
- type: ndcg_at_100
|
825 |
+
value: 87.0
|
826 |
+
- type: ndcg_at_1000
|
827 |
+
value: 87.143
|
828 |
+
- type: ndcg_at_3
|
829 |
+
value: 82.17
|
830 |
+
- type: ndcg_at_5
|
831 |
+
value: 84.057
|
832 |
+
- type: precision_at_1
|
833 |
+
value: 77.29
|
834 |
+
- type: precision_at_10
|
835 |
+
value: 13.15
|
836 |
+
- type: precision_at_100
|
837 |
+
value: 1.522
|
838 |
+
- type: precision_at_1000
|
839 |
+
value: 0.156
|
840 |
+
- type: precision_at_3
|
841 |
+
value: 36.173
|
842 |
+
- type: precision_at_5
|
843 |
+
value: 23.988
|
844 |
+
- type: recall_at_1
|
845 |
+
value: 67.021
|
846 |
+
- type: recall_at_10
|
847 |
+
value: 93.943
|
848 |
+
- type: recall_at_100
|
849 |
+
value: 99.167
|
850 |
+
- type: recall_at_1000
|
851 |
+
value: 99.929
|
852 |
+
- type: recall_at_3
|
853 |
+
value: 84.55799999999999
|
854 |
+
- type: recall_at_5
|
855 |
+
value: 89.697
|
856 |
+
- task:
|
857 |
+
type: Retrieval
|
858 |
+
dataset:
|
859 |
+
type: scidocs-pl
|
860 |
+
name: MTEB SCIDOCS-PL
|
861 |
+
config: default
|
862 |
+
split: test
|
863 |
+
revision: None
|
864 |
+
metrics:
|
865 |
+
- type: map_at_1
|
866 |
+
value: 4.523
|
867 |
+
- type: map_at_10
|
868 |
+
value: 11.584
|
869 |
+
- type: map_at_100
|
870 |
+
value: 13.705
|
871 |
+
- type: map_at_1000
|
872 |
+
value: 14.038999999999998
|
873 |
+
- type: map_at_3
|
874 |
+
value: 8.187999999999999
|
875 |
+
- type: map_at_5
|
876 |
+
value: 9.922
|
877 |
+
- type: mrr_at_1
|
878 |
+
value: 22.1
|
879 |
+
- type: mrr_at_10
|
880 |
+
value: 32.946999999999996
|
881 |
+
- type: mrr_at_100
|
882 |
+
value: 34.11
|
883 |
+
- type: mrr_at_1000
|
884 |
+
value: 34.163
|
885 |
+
- type: mrr_at_3
|
886 |
+
value: 29.633
|
887 |
+
- type: mrr_at_5
|
888 |
+
value: 31.657999999999998
|
889 |
+
- type: ndcg_at_1
|
890 |
+
value: 22.2
|
891 |
+
- type: ndcg_at_10
|
892 |
+
value: 19.466
|
893 |
+
- type: ndcg_at_100
|
894 |
+
value: 27.725
|
895 |
+
- type: ndcg_at_1000
|
896 |
+
value: 33.539
|
897 |
+
- type: ndcg_at_3
|
898 |
+
value: 18.26
|
899 |
+
- type: ndcg_at_5
|
900 |
+
value: 16.265
|
901 |
+
- type: precision_at_1
|
902 |
+
value: 22.2
|
903 |
+
- type: precision_at_10
|
904 |
+
value: 10.11
|
905 |
+
- type: precision_at_100
|
906 |
+
value: 2.204
|
907 |
+
- type: precision_at_1000
|
908 |
+
value: 0.36
|
909 |
+
- type: precision_at_3
|
910 |
+
value: 17.1
|
911 |
+
- type: precision_at_5
|
912 |
+
value: 14.44
|
913 |
+
- type: recall_at_1
|
914 |
+
value: 4.523
|
915 |
+
- type: recall_at_10
|
916 |
+
value: 20.497
|
917 |
+
- type: recall_at_100
|
918 |
+
value: 44.757000000000005
|
919 |
+
- type: recall_at_1000
|
920 |
+
value: 73.14699999999999
|
921 |
+
- type: recall_at_3
|
922 |
+
value: 10.413
|
923 |
+
- type: recall_at_5
|
924 |
+
value: 14.638000000000002
|
925 |
+
- task:
|
926 |
+
type: PairClassification
|
927 |
+
dataset:
|
928 |
+
type: PL-MTEB/sicke-pl-pairclassification
|
929 |
+
name: MTEB SICK-E-PL
|
930 |
+
config: default
|
931 |
+
split: test
|
932 |
+
revision: None
|
933 |
+
metrics:
|
934 |
+
- type: cos_sim_accuracy
|
935 |
+
value: 87.4235629841011
|
936 |
+
- type: cos_sim_ap
|
937 |
+
value: 84.46531935663157
|
938 |
+
- type: cos_sim_f1
|
939 |
+
value: 77.18910963944077
|
940 |
+
- type: cos_sim_precision
|
941 |
+
value: 79.83257229832572
|
942 |
+
- type: cos_sim_recall
|
943 |
+
value: 74.71509971509973
|
944 |
+
- type: dot_accuracy
|
945 |
+
value: 81.10476966979209
|
946 |
+
- type: dot_ap
|
947 |
+
value: 71.12231750543143
|
948 |
+
- type: dot_f1
|
949 |
+
value: 68.13455657492355
|
950 |
+
- type: dot_precision
|
951 |
+
value: 59.69989281886387
|
952 |
+
- type: dot_recall
|
953 |
+
value: 79.34472934472934
|
954 |
+
- type: euclidean_accuracy
|
955 |
+
value: 87.21973094170403
|
956 |
+
- type: euclidean_ap
|
957 |
+
value: 84.33077991405355
|
958 |
+
- type: euclidean_f1
|
959 |
+
value: 76.81931132410365
|
960 |
+
- type: euclidean_precision
|
961 |
+
value: 76.57466383581033
|
962 |
+
- type: euclidean_recall
|
963 |
+
value: 77.06552706552706
|
964 |
+
- type: manhattan_accuracy
|
965 |
+
value: 87.21973094170403
|
966 |
+
- type: manhattan_ap
|
967 |
+
value: 84.35651252115137
|
968 |
+
- type: manhattan_f1
|
969 |
+
value: 76.87004481213376
|
970 |
+
- type: manhattan_precision
|
971 |
+
value: 74.48229792919172
|
972 |
+
- type: manhattan_recall
|
973 |
+
value: 79.41595441595442
|
974 |
+
- type: max_accuracy
|
975 |
+
value: 87.4235629841011
|
976 |
+
- type: max_ap
|
977 |
+
value: 84.46531935663157
|
978 |
+
- type: max_f1
|
979 |
+
value: 77.18910963944077
|
980 |
+
- task:
|
981 |
+
type: STS
|
982 |
+
dataset:
|
983 |
+
type: PL-MTEB/sickr-pl-sts
|
984 |
+
name: MTEB SICK-R-PL
|
985 |
+
config: default
|
986 |
+
split: test
|
987 |
+
revision: None
|
988 |
+
metrics:
|
989 |
+
- type: cos_sim_pearson
|
990 |
+
value: 83.05629619004273
|
991 |
+
- type: cos_sim_spearman
|
992 |
+
value: 79.90632583043678
|
993 |
+
- type: euclidean_pearson
|
994 |
+
value: 81.56426663515931
|
995 |
+
- type: euclidean_spearman
|
996 |
+
value: 80.05439220131294
|
997 |
+
- type: manhattan_pearson
|
998 |
+
value: 81.52958181013108
|
999 |
+
- type: manhattan_spearman
|
1000 |
+
value: 80.0387467163383
|
1001 |
+
- task:
|
1002 |
+
type: STS
|
1003 |
+
dataset:
|
1004 |
+
type: mteb/sts22-crosslingual-sts
|
1005 |
+
name: MTEB STS22 (pl)
|
1006 |
+
config: pl
|
1007 |
+
split: test
|
1008 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
1009 |
+
metrics:
|
1010 |
+
- type: cos_sim_pearson
|
1011 |
+
value: 35.93847200513348
|
1012 |
+
- type: cos_sim_spearman
|
1013 |
+
value: 39.31543525546526
|
1014 |
+
- type: euclidean_pearson
|
1015 |
+
value: 30.19743936591465
|
1016 |
+
- type: euclidean_spearman
|
1017 |
+
value: 39.966612599252095
|
1018 |
+
- type: manhattan_pearson
|
1019 |
+
value: 30.195614462473387
|
1020 |
+
- type: manhattan_spearman
|
1021 |
+
value: 39.822552043685754
|
1022 |
+
- task:
|
1023 |
+
type: Retrieval
|
1024 |
+
dataset:
|
1025 |
+
type: scifact-pl
|
1026 |
+
name: MTEB SciFact-PL
|
1027 |
+
config: default
|
1028 |
+
split: test
|
1029 |
+
revision: None
|
1030 |
+
metrics:
|
1031 |
+
- type: map_at_1
|
1032 |
+
value: 56.05
|
1033 |
+
- type: map_at_10
|
1034 |
+
value: 65.93299999999999
|
1035 |
+
- type: map_at_100
|
1036 |
+
value: 66.571
|
1037 |
+
- type: map_at_1000
|
1038 |
+
value: 66.60000000000001
|
1039 |
+
- type: map_at_3
|
1040 |
+
value: 63.489
|
1041 |
+
- type: map_at_5
|
1042 |
+
value: 64.91799999999999
|
1043 |
+
- type: mrr_at_1
|
1044 |
+
value: 59.0
|
1045 |
+
- type: mrr_at_10
|
1046 |
+
value: 67.026
|
1047 |
+
- type: mrr_at_100
|
1048 |
+
value: 67.559
|
1049 |
+
- type: mrr_at_1000
|
1050 |
+
value: 67.586
|
1051 |
+
- type: mrr_at_3
|
1052 |
+
value: 65.444
|
1053 |
+
- type: mrr_at_5
|
1054 |
+
value: 66.278
|
1055 |
+
- type: ndcg_at_1
|
1056 |
+
value: 59.0
|
1057 |
+
- type: ndcg_at_10
|
1058 |
+
value: 70.233
|
1059 |
+
- type: ndcg_at_100
|
1060 |
+
value: 72.789
|
1061 |
+
- type: ndcg_at_1000
|
1062 |
+
value: 73.637
|
1063 |
+
- type: ndcg_at_3
|
1064 |
+
value: 66.40700000000001
|
1065 |
+
- type: ndcg_at_5
|
1066 |
+
value: 68.206
|
1067 |
+
- type: precision_at_1
|
1068 |
+
value: 59.0
|
1069 |
+
- type: precision_at_10
|
1070 |
+
value: 9.367
|
1071 |
+
- type: precision_at_100
|
1072 |
+
value: 1.06
|
1073 |
+
- type: precision_at_1000
|
1074 |
+
value: 0.11299999999999999
|
1075 |
+
- type: precision_at_3
|
1076 |
+
value: 26.222
|
1077 |
+
- type: precision_at_5
|
1078 |
+
value: 17.067
|
1079 |
+
- type: recall_at_1
|
1080 |
+
value: 56.05
|
1081 |
+
- type: recall_at_10
|
1082 |
+
value: 82.089
|
1083 |
+
- type: recall_at_100
|
1084 |
+
value: 93.167
|
1085 |
+
- type: recall_at_1000
|
1086 |
+
value: 100.0
|
1087 |
+
- type: recall_at_3
|
1088 |
+
value: 71.822
|
1089 |
+
- type: recall_at_5
|
1090 |
+
value: 76.483
|
1091 |
+
- task:
|
1092 |
+
type: Retrieval
|
1093 |
+
dataset:
|
1094 |
+
type: trec-covid-pl
|
1095 |
+
name: MTEB TRECCOVID-PL
|
1096 |
+
config: default
|
1097 |
+
split: test
|
1098 |
+
revision: None
|
1099 |
+
metrics:
|
1100 |
+
- type: map_at_1
|
1101 |
+
value: 0.21
|
1102 |
+
- type: map_at_10
|
1103 |
+
value: 1.7680000000000002
|
1104 |
+
- type: map_at_100
|
1105 |
+
value: 9.447999999999999
|
1106 |
+
- type: map_at_1000
|
1107 |
+
value: 21.728
|
1108 |
+
- type: map_at_3
|
1109 |
+
value: 0.603
|
1110 |
+
- type: map_at_5
|
1111 |
+
value: 0.9610000000000001
|
1112 |
+
- type: mrr_at_1
|
1113 |
+
value: 80.0
|
1114 |
+
- type: mrr_at_10
|
1115 |
+
value: 88.667
|
1116 |
+
- type: mrr_at_100
|
1117 |
+
value: 88.667
|
1118 |
+
- type: mrr_at_1000
|
1119 |
+
value: 88.667
|
1120 |
+
- type: mrr_at_3
|
1121 |
+
value: 87.667
|
1122 |
+
- type: mrr_at_5
|
1123 |
+
value: 88.667
|
1124 |
+
- type: ndcg_at_1
|
1125 |
+
value: 77.0
|
1126 |
+
- type: ndcg_at_10
|
1127 |
+
value: 70.814
|
1128 |
+
- type: ndcg_at_100
|
1129 |
+
value: 52.532000000000004
|
1130 |
+
- type: ndcg_at_1000
|
1131 |
+
value: 45.635999999999996
|
1132 |
+
- type: ndcg_at_3
|
1133 |
+
value: 76.542
|
1134 |
+
- type: ndcg_at_5
|
1135 |
+
value: 73.24000000000001
|
1136 |
+
- type: precision_at_1
|
1137 |
+
value: 80.0
|
1138 |
+
- type: precision_at_10
|
1139 |
+
value: 75.0
|
1140 |
+
- type: precision_at_100
|
1141 |
+
value: 53.879999999999995
|
1142 |
+
- type: precision_at_1000
|
1143 |
+
value: 20.002
|
1144 |
+
- type: precision_at_3
|
1145 |
+
value: 80.0
|
1146 |
+
- type: precision_at_5
|
1147 |
+
value: 76.4
|
1148 |
+
- type: recall_at_1
|
1149 |
+
value: 0.21
|
1150 |
+
- type: recall_at_10
|
1151 |
+
value: 2.012
|
1152 |
+
- type: recall_at_100
|
1153 |
+
value: 12.781999999999998
|
1154 |
+
- type: recall_at_1000
|
1155 |
+
value: 42.05
|
1156 |
+
- type: recall_at_3
|
1157 |
+
value: 0.644
|
1158 |
+
- type: recall_at_5
|
1159 |
+
value: 1.04
|
1160 |
language: pl
|
1161 |
license: apache-2.0
|
1162 |
widget:
|