--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: mmlw-roberta-large results: - task: type: Clustering dataset: type: PL-MTEB/8tags-clustering name: MTEB 8TagsClustering config: default split: test revision: None metrics: - type: v_measure value: 31.16472823814849 - task: type: Classification dataset: type: PL-MTEB/allegro-reviews name: MTEB AllegroReviews config: default split: test revision: None metrics: - type: accuracy value: 47.48508946322067 - type: f1 value: 42.33327527584009 - task: type: Retrieval dataset: type: arguana-pl name: MTEB ArguAna-PL config: default split: test revision: None metrics: - type: map_at_1 value: 38.834 - type: map_at_10 value: 55.22899999999999 - type: map_at_100 value: 55.791999999999994 - type: map_at_1000 value: 55.794 - type: map_at_3 value: 51.233 - type: map_at_5 value: 53.772 - type: mrr_at_1 value: 39.687 - type: mrr_at_10 value: 55.596000000000004 - type: mrr_at_100 value: 56.157000000000004 - type: mrr_at_1000 value: 56.157999999999994 - type: mrr_at_3 value: 51.66 - type: mrr_at_5 value: 54.135 - type: ndcg_at_1 value: 38.834 - type: ndcg_at_10 value: 63.402 - type: ndcg_at_100 value: 65.78 - type: ndcg_at_1000 value: 65.816 - type: ndcg_at_3 value: 55.349000000000004 - type: ndcg_at_5 value: 59.892 - type: precision_at_1 value: 38.834 - type: precision_at_10 value: 8.905000000000001 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.428 - type: precision_at_5 value: 15.647 - type: recall_at_1 value: 38.834 - type: recall_at_10 value: 89.047 - type: recall_at_100 value: 99.36 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 67.283 - type: recall_at_5 value: 78.236 - task: type: Classification dataset: type: PL-MTEB/cbd name: MTEB CBD config: default split: test revision: None metrics: - type: accuracy value: 69.33 - type: ap value: 22.972409521444508 - type: f1 value: 58.91072163784952 - task: type: PairClassification dataset: type: PL-MTEB/cdsce-pairclassification name: MTEB CDSC-E config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 89.8 - type: cos_sim_ap value: 79.87039801032493 - type: cos_sim_f1 value: 68.53932584269663 - type: cos_sim_precision value: 73.49397590361446 - type: cos_sim_recall value: 64.21052631578948 - type: dot_accuracy value: 86.1 - type: dot_ap value: 63.684975861694035 - type: dot_f1 value: 63.61746361746362 - type: dot_precision value: 52.57731958762887 - type: dot_recall value: 80.52631578947368 - type: euclidean_accuracy value: 89.8 - type: euclidean_ap value: 79.7527126811392 - type: euclidean_f1 value: 68.46361185983827 - type: euclidean_precision value: 70.1657458563536 - type: euclidean_recall value: 66.84210526315789 - type: manhattan_accuracy value: 89.7 - type: manhattan_ap value: 79.64632771093657 - type: manhattan_f1 value: 68.4931506849315 - type: manhattan_precision value: 71.42857142857143 - type: manhattan_recall value: 65.78947368421053 - type: max_accuracy value: 89.8 - type: max_ap value: 79.87039801032493 - type: max_f1 value: 68.53932584269663 - task: type: STS dataset: type: PL-MTEB/cdscr-sts name: MTEB CDSC-R config: default split: test revision: None metrics: - type: cos_sim_pearson value: 92.1088892402831 - type: cos_sim_spearman value: 92.54126377343101 - type: euclidean_pearson value: 91.99022371986013 - type: euclidean_spearman value: 92.55235973775511 - type: manhattan_pearson value: 91.92170171331357 - type: manhattan_spearman value: 92.47797623672449 - task: type: Retrieval dataset: type: dbpedia-pl name: MTEB DBPedia-PL config: default split: test revision: None metrics: - type: map_at_1 value: 8.683 - type: map_at_10 value: 18.9 - type: map_at_100 value: 26.933 - type: map_at_1000 value: 28.558 - type: map_at_3 value: 13.638 - type: map_at_5 value: 15.9 - type: mrr_at_1 value: 63.74999999999999 - type: mrr_at_10 value: 73.566 - type: mrr_at_100 value: 73.817 - type: mrr_at_1000 value: 73.824 - type: mrr_at_3 value: 71.875 - type: mrr_at_5 value: 73.2 - type: ndcg_at_1 value: 53.125 - type: ndcg_at_10 value: 40.271 - type: ndcg_at_100 value: 45.51 - type: ndcg_at_1000 value: 52.968 - type: ndcg_at_3 value: 45.122 - type: ndcg_at_5 value: 42.306 - type: precision_at_1 value: 63.74999999999999 - type: precision_at_10 value: 31.55 - type: precision_at_100 value: 10.440000000000001 - type: precision_at_1000 value: 2.01 - type: precision_at_3 value: 48.333 - type: precision_at_5 value: 40.5 - type: recall_at_1 value: 8.683 - type: recall_at_10 value: 24.63 - type: recall_at_100 value: 51.762 - type: recall_at_1000 value: 75.64999999999999 - type: recall_at_3 value: 15.136 - type: recall_at_5 value: 18.678 - task: type: Retrieval dataset: type: fiqa-pl name: MTEB FiQA-PL config: default split: test revision: None metrics: - type: map_at_1 value: 19.872999999999998 - type: map_at_10 value: 32.923 - type: map_at_100 value: 34.819 - type: map_at_1000 value: 34.99 - type: map_at_3 value: 28.500999999999998 - type: map_at_5 value: 31.087999999999997 - type: mrr_at_1 value: 40.432 - type: mrr_at_10 value: 49.242999999999995 - type: mrr_at_100 value: 50.014 - type: mrr_at_1000 value: 50.05500000000001 - type: mrr_at_3 value: 47.144999999999996 - type: mrr_at_5 value: 48.171 - type: ndcg_at_1 value: 40.586 - type: ndcg_at_10 value: 40.887 - type: ndcg_at_100 value: 47.701 - type: ndcg_at_1000 value: 50.624 - type: ndcg_at_3 value: 37.143 - type: ndcg_at_5 value: 38.329 - type: precision_at_1 value: 40.586 - type: precision_at_10 value: 11.497 - type: precision_at_100 value: 1.838 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 25.0 - type: precision_at_5 value: 18.549 - type: recall_at_1 value: 19.872999999999998 - type: recall_at_10 value: 48.073 - type: recall_at_100 value: 73.473 - type: recall_at_1000 value: 90.94 - type: recall_at_3 value: 33.645 - type: recall_at_5 value: 39.711 - task: type: Retrieval dataset: type: hotpotqa-pl name: MTEB HotpotQA-PL config: default split: test revision: None metrics: - type: map_at_1 value: 39.399 - type: map_at_10 value: 62.604000000000006 - type: map_at_100 value: 63.475 - type: map_at_1000 value: 63.534 - type: map_at_3 value: 58.870999999999995 - type: map_at_5 value: 61.217 - type: mrr_at_1 value: 78.758 - type: mrr_at_10 value: 84.584 - type: mrr_at_100 value: 84.753 - type: mrr_at_1000 value: 84.759 - type: mrr_at_3 value: 83.65700000000001 - type: mrr_at_5 value: 84.283 - type: ndcg_at_1 value: 78.798 - type: ndcg_at_10 value: 71.04 - type: ndcg_at_100 value: 74.048 - type: ndcg_at_1000 value: 75.163 - type: ndcg_at_3 value: 65.862 - type: ndcg_at_5 value: 68.77600000000001 - type: precision_at_1 value: 78.798 - type: precision_at_10 value: 14.949000000000002 - type: precision_at_100 value: 1.7309999999999999 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 42.237 - type: precision_at_5 value: 27.634999999999998 - type: recall_at_1 value: 39.399 - type: recall_at_10 value: 74.747 - type: recall_at_100 value: 86.529 - type: recall_at_1000 value: 93.849 - type: recall_at_3 value: 63.356 - type: recall_at_5 value: 69.08800000000001 - task: type: Retrieval dataset: type: msmarco-pl name: MTEB MSMARCO-PL config: default split: validation revision: None metrics: - type: map_at_1 value: 19.598 - type: map_at_10 value: 30.453999999999997 - type: map_at_100 value: 31.601000000000003 - type: map_at_1000 value: 31.66 - type: map_at_3 value: 27.118 - type: map_at_5 value: 28.943 - type: mrr_at_1 value: 20.1 - type: mrr_at_10 value: 30.978 - type: mrr_at_100 value: 32.057 - type: mrr_at_1000 value: 32.112 - type: mrr_at_3 value: 27.679 - type: mrr_at_5 value: 29.493000000000002 - type: ndcg_at_1 value: 20.158 - type: ndcg_at_10 value: 36.63 - type: ndcg_at_100 value: 42.291000000000004 - type: ndcg_at_1000 value: 43.828 - type: ndcg_at_3 value: 29.744999999999997 - type: ndcg_at_5 value: 33.024 - type: precision_at_1 value: 20.158 - type: precision_at_10 value: 5.811999999999999 - type: precision_at_100 value: 0.868 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 12.689 - type: precision_at_5 value: 9.295 - type: recall_at_1 value: 19.598 - type: recall_at_10 value: 55.596999999999994 - type: recall_at_100 value: 82.143 - type: recall_at_1000 value: 94.015 - type: recall_at_3 value: 36.720000000000006 - type: recall_at_5 value: 44.606 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.8117014122394 - type: f1 value: 72.0259730121889 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.84465366509752 - type: f1 value: 77.73439218970051 - task: type: Retrieval dataset: type: nfcorpus-pl name: MTEB NFCorpus-PL config: default split: test revision: None metrics: - type: map_at_1 value: 5.604 - type: map_at_10 value: 12.684000000000001 - type: map_at_100 value: 16.274 - type: map_at_1000 value: 17.669 - type: map_at_3 value: 9.347 - type: map_at_5 value: 10.752 - type: mrr_at_1 value: 43.963 - type: mrr_at_10 value: 52.94 - type: mrr_at_100 value: 53.571000000000005 - type: mrr_at_1000 value: 53.613 - type: mrr_at_3 value: 51.032 - type: mrr_at_5 value: 52.193 - type: ndcg_at_1 value: 41.486000000000004 - type: ndcg_at_10 value: 33.937 - type: ndcg_at_100 value: 31.726 - type: ndcg_at_1000 value: 40.331 - type: ndcg_at_3 value: 39.217 - type: ndcg_at_5 value: 36.521 - type: precision_at_1 value: 43.034 - type: precision_at_10 value: 25.324999999999996 - type: precision_at_100 value: 8.022 - type: precision_at_1000 value: 2.0629999999999997 - type: precision_at_3 value: 36.945 - type: precision_at_5 value: 31.517 - type: recall_at_1 value: 5.604 - type: recall_at_10 value: 16.554 - type: recall_at_100 value: 33.113 - type: recall_at_1000 value: 62.832 - type: recall_at_3 value: 10.397 - type: recall_at_5 value: 12.629999999999999 - task: type: Retrieval dataset: type: nq-pl name: MTEB NQ-PL config: default split: test revision: None metrics: - type: map_at_1 value: 26.642 - type: map_at_10 value: 40.367999999999995 - type: map_at_100 value: 41.487 - type: map_at_1000 value: 41.528 - type: map_at_3 value: 36.292 - type: map_at_5 value: 38.548 - type: mrr_at_1 value: 30.156 - type: mrr_at_10 value: 42.853 - type: mrr_at_100 value: 43.742 - type: mrr_at_1000 value: 43.772 - type: mrr_at_3 value: 39.47 - type: mrr_at_5 value: 41.366 - type: ndcg_at_1 value: 30.214000000000002 - type: ndcg_at_10 value: 47.620000000000005 - type: ndcg_at_100 value: 52.486 - type: ndcg_at_1000 value: 53.482 - type: ndcg_at_3 value: 39.864 - type: ndcg_at_5 value: 43.645 - type: precision_at_1 value: 30.214000000000002 - type: precision_at_10 value: 8.03 - type: precision_at_100 value: 1.0739999999999998 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 18.183 - type: precision_at_5 value: 13.105 - type: recall_at_1 value: 26.642 - type: recall_at_10 value: 67.282 - type: recall_at_100 value: 88.632 - type: recall_at_1000 value: 96.109 - type: recall_at_3 value: 47.048 - type: recall_at_5 value: 55.791000000000004 - task: type: Classification dataset: type: laugustyniak/abusive-clauses-pl name: MTEB PAC config: default split: test revision: None metrics: - type: accuracy value: 64.69446857804807 - type: ap value: 75.58028779280512 - type: f1 value: 62.3610392963539 - task: type: PairClassification dataset: type: PL-MTEB/ppc-pairclassification name: MTEB PPC config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 88.4 - type: cos_sim_ap value: 93.56462741831817 - type: cos_sim_f1 value: 90.73634204275535 - type: cos_sim_precision value: 86.94992412746586 - type: cos_sim_recall value: 94.86754966887418 - type: dot_accuracy value: 75.3 - type: dot_ap value: 83.06945936688015 - type: dot_f1 value: 81.50887573964496 - type: dot_precision value: 73.66310160427807 - type: dot_recall value: 91.22516556291392 - type: euclidean_accuracy value: 88.8 - type: euclidean_ap value: 93.53974198044985 - type: euclidean_f1 value: 90.87947882736157 - type: euclidean_precision value: 89.42307692307693 - type: euclidean_recall value: 92.3841059602649 - type: manhattan_accuracy value: 88.8 - type: manhattan_ap value: 93.54209967780366 - type: manhattan_f1 value: 90.85072231139645 - type: manhattan_precision value: 88.1619937694704 - type: manhattan_recall value: 93.70860927152319 - type: max_accuracy value: 88.8 - type: max_ap value: 93.56462741831817 - type: max_f1 value: 90.87947882736157 - task: type: PairClassification dataset: type: PL-MTEB/psc-pairclassification name: MTEB PSC config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 97.03153988868274 - type: cos_sim_ap value: 98.63208302459417 - type: cos_sim_f1 value: 95.06172839506173 - type: cos_sim_precision value: 96.25 - type: cos_sim_recall value: 93.90243902439023 - type: dot_accuracy value: 86.82745825602969 - type: dot_ap value: 83.77450133931302 - type: dot_f1 value: 79.3053545586107 - type: dot_precision value: 75.48209366391184 - type: dot_recall value: 83.53658536585365 - type: euclidean_accuracy value: 97.03153988868274 - type: euclidean_ap value: 98.80678168225653 - type: euclidean_f1 value: 95.20958083832335 - type: euclidean_precision value: 93.52941176470588 - type: euclidean_recall value: 96.95121951219512 - type: manhattan_accuracy value: 97.21706864564007 - type: manhattan_ap value: 98.82279484224186 - type: manhattan_f1 value: 95.44072948328268 - type: manhattan_precision value: 95.15151515151516 - type: manhattan_recall value: 95.73170731707317 - type: max_accuracy value: 97.21706864564007 - type: max_ap value: 98.82279484224186 - type: max_f1 value: 95.44072948328268 - task: type: Classification dataset: type: PL-MTEB/polemo2_in name: MTEB PolEmo2.0-IN config: default split: test revision: None metrics: - type: accuracy value: 76.84210526315789 - type: f1 value: 75.49713789106988 - task: type: Classification dataset: type: PL-MTEB/polemo2_out name: MTEB PolEmo2.0-OUT config: default split: test revision: None metrics: - type: accuracy value: 53.7246963562753 - type: f1 value: 43.060592194322986 - task: type: Retrieval dataset: type: quora-pl name: MTEB Quora-PL config: default split: test revision: None metrics: - type: map_at_1 value: 67.021 - type: map_at_10 value: 81.362 - type: map_at_100 value: 82.06700000000001 - type: map_at_1000 value: 82.084 - type: map_at_3 value: 78.223 - type: map_at_5 value: 80.219 - type: mrr_at_1 value: 77.17 - type: mrr_at_10 value: 84.222 - type: mrr_at_100 value: 84.37599999999999 - type: mrr_at_1000 value: 84.379 - type: mrr_at_3 value: 83.003 - type: mrr_at_5 value: 83.834 - type: ndcg_at_1 value: 77.29 - type: ndcg_at_10 value: 85.506 - type: ndcg_at_100 value: 87.0 - type: ndcg_at_1000 value: 87.143 - type: ndcg_at_3 value: 82.17 - type: ndcg_at_5 value: 84.057 - type: precision_at_1 value: 77.29 - type: precision_at_10 value: 13.15 - type: precision_at_100 value: 1.522 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.173 - type: precision_at_5 value: 23.988 - type: recall_at_1 value: 67.021 - type: recall_at_10 value: 93.943 - type: recall_at_100 value: 99.167 - type: recall_at_1000 value: 99.929 - type: recall_at_3 value: 84.55799999999999 - type: recall_at_5 value: 89.697 - task: type: Retrieval dataset: type: scidocs-pl name: MTEB SCIDOCS-PL config: default split: test revision: None metrics: - type: map_at_1 value: 4.523 - type: map_at_10 value: 11.584 - type: map_at_100 value: 13.705 - type: map_at_1000 value: 14.038999999999998 - type: map_at_3 value: 8.187999999999999 - type: map_at_5 value: 9.922 - type: mrr_at_1 value: 22.1 - type: mrr_at_10 value: 32.946999999999996 - type: mrr_at_100 value: 34.11 - type: mrr_at_1000 value: 34.163 - type: mrr_at_3 value: 29.633 - type: mrr_at_5 value: 31.657999999999998 - type: ndcg_at_1 value: 22.2 - type: ndcg_at_10 value: 19.466 - type: ndcg_at_100 value: 27.725 - type: ndcg_at_1000 value: 33.539 - type: ndcg_at_3 value: 18.26 - type: ndcg_at_5 value: 16.265 - type: precision_at_1 value: 22.2 - type: precision_at_10 value: 10.11 - type: precision_at_100 value: 2.204 - type: precision_at_1000 value: 0.36 - type: precision_at_3 value: 17.1 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 4.523 - type: recall_at_10 value: 20.497 - type: recall_at_100 value: 44.757000000000005 - type: recall_at_1000 value: 73.14699999999999 - type: recall_at_3 value: 10.413 - type: recall_at_5 value: 14.638000000000002 - task: type: PairClassification dataset: type: PL-MTEB/sicke-pl-pairclassification name: MTEB SICK-E-PL config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 87.4235629841011 - type: cos_sim_ap value: 84.46531935663157 - type: cos_sim_f1 value: 77.18910963944077 - type: cos_sim_precision value: 79.83257229832572 - type: cos_sim_recall value: 74.71509971509973 - type: dot_accuracy value: 81.10476966979209 - type: dot_ap value: 71.12231750543143 - type: dot_f1 value: 68.13455657492355 - type: dot_precision value: 59.69989281886387 - type: dot_recall value: 79.34472934472934 - type: euclidean_accuracy value: 87.21973094170403 - type: euclidean_ap value: 84.33077991405355 - type: euclidean_f1 value: 76.81931132410365 - type: euclidean_precision value: 76.57466383581033 - type: euclidean_recall value: 77.06552706552706 - type: manhattan_accuracy value: 87.21973094170403 - type: manhattan_ap value: 84.35651252115137 - type: manhattan_f1 value: 76.87004481213376 - type: manhattan_precision value: 74.48229792919172 - type: manhattan_recall value: 79.41595441595442 - type: max_accuracy value: 87.4235629841011 - type: max_ap value: 84.46531935663157 - type: max_f1 value: 77.18910963944077 - task: type: STS dataset: type: PL-MTEB/sickr-pl-sts name: MTEB SICK-R-PL config: default split: test revision: None metrics: - type: cos_sim_pearson value: 83.05629619004273 - type: cos_sim_spearman value: 79.90632583043678 - type: euclidean_pearson value: 81.56426663515931 - type: euclidean_spearman value: 80.05439220131294 - type: manhattan_pearson value: 81.52958181013108 - type: manhattan_spearman value: 80.0387467163383 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 35.93847200513348 - type: cos_sim_spearman value: 39.31543525546526 - type: euclidean_pearson value: 30.19743936591465 - type: euclidean_spearman value: 39.966612599252095 - type: manhattan_pearson value: 30.195614462473387 - type: manhattan_spearman value: 39.822552043685754 - task: type: Retrieval dataset: type: scifact-pl name: MTEB SciFact-PL config: default split: test revision: None metrics: - type: map_at_1 value: 56.05 - type: map_at_10 value: 65.93299999999999 - type: map_at_100 value: 66.571 - type: map_at_1000 value: 66.60000000000001 - type: map_at_3 value: 63.489 - type: map_at_5 value: 64.91799999999999 - type: mrr_at_1 value: 59.0 - type: mrr_at_10 value: 67.026 - type: mrr_at_100 value: 67.559 - type: mrr_at_1000 value: 67.586 - type: mrr_at_3 value: 65.444 - type: mrr_at_5 value: 66.278 - type: ndcg_at_1 value: 59.0 - type: ndcg_at_10 value: 70.233 - type: ndcg_at_100 value: 72.789 - type: ndcg_at_1000 value: 73.637 - type: ndcg_at_3 value: 66.40700000000001 - type: ndcg_at_5 value: 68.206 - type: precision_at_1 value: 59.0 - type: precision_at_10 value: 9.367 - type: precision_at_100 value: 1.06 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.222 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 56.05 - type: recall_at_10 value: 82.089 - type: recall_at_100 value: 93.167 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 71.822 - type: recall_at_5 value: 76.483 - task: type: Retrieval dataset: type: trec-covid-pl name: MTEB TRECCOVID-PL config: default split: test revision: None metrics: - type: map_at_1 value: 0.21 - type: map_at_10 value: 1.7680000000000002 - type: map_at_100 value: 9.447999999999999 - type: map_at_1000 value: 21.728 - type: map_at_3 value: 0.603 - type: map_at_5 value: 0.9610000000000001 - type: mrr_at_1 value: 80.0 - type: mrr_at_10 value: 88.667 - type: mrr_at_100 value: 88.667 - type: mrr_at_1000 value: 88.667 - type: mrr_at_3 value: 87.667 - type: mrr_at_5 value: 88.667 - type: ndcg_at_1 value: 77.0 - type: ndcg_at_10 value: 70.814 - type: ndcg_at_100 value: 52.532000000000004 - type: ndcg_at_1000 value: 45.635999999999996 - type: ndcg_at_3 value: 76.542 - type: ndcg_at_5 value: 73.24000000000001 - type: precision_at_1 value: 80.0 - type: precision_at_10 value: 75.0 - type: precision_at_100 value: 53.879999999999995 - type: precision_at_1000 value: 20.002 - type: precision_at_3 value: 80.0 - type: precision_at_5 value: 76.4 - type: recall_at_1 value: 0.21 - type: recall_at_10 value: 2.012 - type: recall_at_100 value: 12.781999999999998 - type: recall_at_1000 value: 42.05 - type: recall_at_3 value: 0.644 - type: recall_at_5 value: 1.04 language: pl license: apache-2.0 widget: - source_sentence: "zapytanie: Jak dożyć 100 lat?" sentences: - "Trzeba zdrowo się odżywiać i uprawiać sport." - "Trzeba pić alkohol, imprezować i jeździć szybkimi autami." - "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." ---

MMLW-roberta-large

MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish. This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning. It transforms texts to 1024 dimensional vectors. The model was initialized with Polish RoBERTa checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-base-en) as teacher models for distillation. ## Usage (Sentence-Transformers) ⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, each query should be preceded by the prefix **"zapytanie: "** ⚠️ You can use the model like this with [sentence-transformers](https://www.SBERT.net): ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim query_prefix = "zapytanie: " answer_prefix = "" queries = [query_prefix + "Jak dożyć 100 lat?"] answers = [ answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.", answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.", answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." ] model = SentenceTransformer("sdadas/mmlw-roberta-large") queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False) answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False) best_answer = cos_sim(queries_emb, answers_emb).argmax().item() print(answers[best_answer]) # Trzeba zdrowo się odżywiać i uprawiać sport. ``` ## Evaluation Results The model achieves **NDCG@10** of **55.95** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results. ## Acknowledgements This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.