--- language: - km license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - openslr - generated_from_trainer datasets: - openslr model-index: - name: training results: [] --- # Wav2VecBert 2.0 Khmer This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the OpenSLR 42 dataset. ```python from transformers import pipeline recognizer = pipeline("automatic-speech-recognition", model="seanghay/w2v-bert-2.0-khmer", device="cuda") text = recognizer("audio.mp3", chunk_length_s=10, stride_length_s=(4, 2))["text"] ``` ## Training and evaluation data Eval with 10% of OpenSLR seed: 42 ``` { "epoch": 14.634146341463415, "eval_loss": 0.36365753412246704, "eval_runtime": 8.7546, "eval_samples_per_second": 33.24, "eval_steps_per_second": 4.226, "eval_wer": 0.2579008973858759, "step": 2400 } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Framework versions - Transformers 4.42.4 - Pytorch 2.0.1 - Datasets 2.20.0 - Tokenizers 0.19.1