Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,143 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
-
|
|
|
|
|
4 |
- pytorch_model_hub_mixin
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
+
- autoencoder
|
4 |
+
- image-colorization
|
5 |
+
- pytorch
|
6 |
- pytorch_model_hub_mixin
|
7 |
---
|
8 |
|
9 |
+
# Model Colorization Autoencoder
|
10 |
+
|
11 |
+
## Model Description
|
12 |
+
|
13 |
+
This autoencoder model is designed for image colorization. It takes grayscale images as input and outputs colorized versions of those images. The model architecture consists of an encoder-decoder structure, where the encoder compresses the input image into a latent representation, and the decoder reconstructs the image in color.
|
14 |
+
|
15 |
+
### Architecture
|
16 |
+
|
17 |
+
- **Encoder**: The encoder comprises three convolutional layers followed by max pooling and ReLU activations, each paired with batch normalization. It ends with a flattening layer and a fully connected layer to produce a latent vector.
|
18 |
+
- **Decoder**: The decoder mirrors the encoder, using linear and transposed convolutional layers with ReLU activations and batch normalization. The final layer outputs a color image using a sigmoid activation function.
|
19 |
+
|
20 |
+
The architecture details are as follows:
|
21 |
+
```python
|
22 |
+
class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
23 |
+
def __init__(self):
|
24 |
+
super(ModelColorization, self).__init__()
|
25 |
+
self.encoder = nn.Sequential(
|
26 |
+
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
|
27 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.BatchNorm2d(64),
|
30 |
+
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
31 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.BatchNorm2d(32),
|
34 |
+
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
|
35 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
36 |
+
nn.ReLU(),
|
37 |
+
nn.BatchNorm2d(16),
|
38 |
+
nn.Flatten(),
|
39 |
+
nn.Linear(16*45*45, 4000),
|
40 |
+
)
|
41 |
+
self.decoder = nn.Sequential(
|
42 |
+
nn.Linear(4000, 16 * 45 * 45),
|
43 |
+
nn.ReLU(),
|
44 |
+
nn.Unflatten(1, (16, 45, 45)),
|
45 |
+
nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
|
46 |
+
nn.ReLU(),
|
47 |
+
nn.BatchNorm2d(32),
|
48 |
+
nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
49 |
+
nn.ReLU(),
|
50 |
+
nn.BatchNorm2d(64),
|
51 |
+
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
|
52 |
+
nn.Sigmoid()
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x = self.encoder(x)
|
57 |
+
x = self.decoder(x)
|
58 |
+
return x
|
59 |
+
|
60 |
+
Here's your model card in Markdown format:
|
61 |
+
|
62 |
+
md
|
63 |
+
Copy code
|
64 |
+
---
|
65 |
+
tags:
|
66 |
+
- autoencoder
|
67 |
+
- image-colorization
|
68 |
+
- pytorch
|
69 |
+
- pytorch_model_hub_mixin
|
70 |
+
---
|
71 |
+
|
72 |
+
# Model Colorization Autoencoder
|
73 |
+
|
74 |
+
## Model Description
|
75 |
+
|
76 |
+
This autoencoder model is designed for image colorization. It takes grayscale images as input and outputs colorized versions of those images. The model architecture consists of an encoder-decoder structure, where the encoder compresses the input image into a latent representation, and the decoder reconstructs the image in color.
|
77 |
+
|
78 |
+
### Architecture
|
79 |
+
|
80 |
+
- **Encoder**: The encoder comprises three convolutional layers followed by max pooling and ReLU activations, each paired with batch normalization. It ends with a flattening layer and a fully connected layer to produce a latent vector.
|
81 |
+
- **Decoder**: The decoder mirrors the encoder, using linear and transposed convolutional layers with ReLU activations and batch normalization. The final layer outputs a color image using a sigmoid activation function.
|
82 |
+
|
83 |
+
The architecture details are as follows:
|
84 |
+
```python
|
85 |
+
class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
86 |
+
def __init__(self):
|
87 |
+
super(ModelColorization, self).__init__()
|
88 |
+
self.encoder = nn.Sequential(
|
89 |
+
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
|
90 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
91 |
+
nn.ReLU(),
|
92 |
+
nn.BatchNorm2d(64),
|
93 |
+
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
94 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
95 |
+
nn.ReLU(),
|
96 |
+
nn.BatchNorm2d(32),
|
97 |
+
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
|
98 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
99 |
+
nn.ReLU(),
|
100 |
+
nn.BatchNorm2d(16),
|
101 |
+
nn.Flatten(),
|
102 |
+
nn.Linear(16*45*45, 4000),
|
103 |
+
)
|
104 |
+
self.decoder = nn.Sequential(
|
105 |
+
nn.Linear(4000, 16 * 45 * 45),
|
106 |
+
nn.ReLU(),
|
107 |
+
nn.Unflatten(1, (16, 45, 45)),
|
108 |
+
nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
|
109 |
+
nn.ReLU(),
|
110 |
+
nn.BatchNorm2d(32),
|
111 |
+
nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
112 |
+
nn.ReLU(),
|
113 |
+
nn.BatchNorm2d(64),
|
114 |
+
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
|
115 |
+
nn.Sigmoid()
|
116 |
+
)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
x = self.encoder(x)
|
120 |
+
x = self.decoder(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
### Training Details
|
124 |
+
The model was trained using PyTorch for 5 epochs. Here are the training and validation losses observed during the training:
|
125 |
+
|
126 |
+
Epoch 1: Training Loss: 0.0063, Validation Loss: 0.0042
|
127 |
+
Epoch 2: Training Loss: 0.0036, Validation Loss: 0.0035
|
128 |
+
Epoch 3: Training Loss: 0.0032, Validation Loss: 0.0032
|
129 |
+
Epoch 4: Training Loss: 0.0030, Validation Loss: 0.0030
|
130 |
+
Epoch 5: Training Loss: 0.0029, Validation Loss: 0.0030
|
131 |
+
The model demonstrated continuous improvement in reducing both training and validation loss over the epochs.
|
132 |
+
|
133 |
+
### Usage
|
134 |
+
You can load the model from the Hugging Face Hub using the following code:
|
135 |
+
|
136 |
+
```
|
137 |
+
# Ensure you have the necessary dependencies installed:
|
138 |
+
pip install torch torchvision transformers
|
139 |
+
|
140 |
+
from transformers import AutoModel
|
141 |
+
|
142 |
+
model = AutoModel.from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
|
143 |
+
```
|