sebastiansarasti commited on
Commit
724e02f
·
verified ·
1 Parent(s): ab9aac6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -4
README.md CHANGED
@@ -1,9 +1,143 @@
1
  ---
2
  tags:
3
- - model_hub_mixin
 
 
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
+ - autoencoder
4
+ - image-colorization
5
+ - pytorch
6
  - pytorch_model_hub_mixin
7
  ---
8
 
9
+ # Model Colorization Autoencoder
10
+
11
+ ## Model Description
12
+
13
+ This autoencoder model is designed for image colorization. It takes grayscale images as input and outputs colorized versions of those images. The model architecture consists of an encoder-decoder structure, where the encoder compresses the input image into a latent representation, and the decoder reconstructs the image in color.
14
+
15
+ ### Architecture
16
+
17
+ - **Encoder**: The encoder comprises three convolutional layers followed by max pooling and ReLU activations, each paired with batch normalization. It ends with a flattening layer and a fully connected layer to produce a latent vector.
18
+ - **Decoder**: The decoder mirrors the encoder, using linear and transposed convolutional layers with ReLU activations and batch normalization. The final layer outputs a color image using a sigmoid activation function.
19
+
20
+ The architecture details are as follows:
21
+ ```python
22
+ class ModelColorization(nn.Module, PyTorchModelHubMixin):
23
+ def __init__(self):
24
+ super(ModelColorization, self).__init__()
25
+ self.encoder = nn.Sequential(
26
+ nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
27
+ nn.MaxPool2d(kernel_size=2, stride=2),
28
+ nn.ReLU(),
29
+ nn.BatchNorm2d(64),
30
+ nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
31
+ nn.MaxPool2d(kernel_size=2, stride=2),
32
+ nn.ReLU(),
33
+ nn.BatchNorm2d(32),
34
+ nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
35
+ nn.MaxPool2d(kernel_size=2, stride=2),
36
+ nn.ReLU(),
37
+ nn.BatchNorm2d(16),
38
+ nn.Flatten(),
39
+ nn.Linear(16*45*45, 4000),
40
+ )
41
+ self.decoder = nn.Sequential(
42
+ nn.Linear(4000, 16 * 45 * 45),
43
+ nn.ReLU(),
44
+ nn.Unflatten(1, (16, 45, 45)),
45
+ nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
46
+ nn.ReLU(),
47
+ nn.BatchNorm2d(32),
48
+ nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
49
+ nn.ReLU(),
50
+ nn.BatchNorm2d(64),
51
+ nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
52
+ nn.Sigmoid()
53
+ )
54
+
55
+ def forward(self, x):
56
+ x = self.encoder(x)
57
+ x = self.decoder(x)
58
+ return x
59
+
60
+ Here's your model card in Markdown format:
61
+
62
+ md
63
+ Copy code
64
+ ---
65
+ tags:
66
+ - autoencoder
67
+ - image-colorization
68
+ - pytorch
69
+ - pytorch_model_hub_mixin
70
+ ---
71
+
72
+ # Model Colorization Autoencoder
73
+
74
+ ## Model Description
75
+
76
+ This autoencoder model is designed for image colorization. It takes grayscale images as input and outputs colorized versions of those images. The model architecture consists of an encoder-decoder structure, where the encoder compresses the input image into a latent representation, and the decoder reconstructs the image in color.
77
+
78
+ ### Architecture
79
+
80
+ - **Encoder**: The encoder comprises three convolutional layers followed by max pooling and ReLU activations, each paired with batch normalization. It ends with a flattening layer and a fully connected layer to produce a latent vector.
81
+ - **Decoder**: The decoder mirrors the encoder, using linear and transposed convolutional layers with ReLU activations and batch normalization. The final layer outputs a color image using a sigmoid activation function.
82
+
83
+ The architecture details are as follows:
84
+ ```python
85
+ class ModelColorization(nn.Module, PyTorchModelHubMixin):
86
+ def __init__(self):
87
+ super(ModelColorization, self).__init__()
88
+ self.encoder = nn.Sequential(
89
+ nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
90
+ nn.MaxPool2d(kernel_size=2, stride=2),
91
+ nn.ReLU(),
92
+ nn.BatchNorm2d(64),
93
+ nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
94
+ nn.MaxPool2d(kernel_size=2, stride=2),
95
+ nn.ReLU(),
96
+ nn.BatchNorm2d(32),
97
+ nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
98
+ nn.MaxPool2d(kernel_size=2, stride=2),
99
+ nn.ReLU(),
100
+ nn.BatchNorm2d(16),
101
+ nn.Flatten(),
102
+ nn.Linear(16*45*45, 4000),
103
+ )
104
+ self.decoder = nn.Sequential(
105
+ nn.Linear(4000, 16 * 45 * 45),
106
+ nn.ReLU(),
107
+ nn.Unflatten(1, (16, 45, 45)),
108
+ nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
109
+ nn.ReLU(),
110
+ nn.BatchNorm2d(32),
111
+ nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
112
+ nn.ReLU(),
113
+ nn.BatchNorm2d(64),
114
+ nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
115
+ nn.Sigmoid()
116
+ )
117
+
118
+ def forward(self, x):
119
+ x = self.encoder(x)
120
+ x = self.decoder(x)
121
+ return x
122
+
123
+ ### Training Details
124
+ The model was trained using PyTorch for 5 epochs. Here are the training and validation losses observed during the training:
125
+
126
+ Epoch 1: Training Loss: 0.0063, Validation Loss: 0.0042
127
+ Epoch 2: Training Loss: 0.0036, Validation Loss: 0.0035
128
+ Epoch 3: Training Loss: 0.0032, Validation Loss: 0.0032
129
+ Epoch 4: Training Loss: 0.0030, Validation Loss: 0.0030
130
+ Epoch 5: Training Loss: 0.0029, Validation Loss: 0.0030
131
+ The model demonstrated continuous improvement in reducing both training and validation loss over the epochs.
132
+
133
+ ### Usage
134
+ You can load the model from the Hugging Face Hub using the following code:
135
+
136
+ ```
137
+ # Ensure you have the necessary dependencies installed:
138
+ pip install torch torchvision transformers
139
+
140
+ from transformers import AutoModel
141
+
142
+ model = AutoModel.from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
143
+ ```