sebastiansarasti commited on
Commit
7e4cbe5
1 Parent(s): 72a07e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -5
README.md CHANGED
@@ -1,9 +1,55 @@
1
  ---
2
  tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
+ - pytorch
 
4
  ---
5
 
6
+ # CNN Leukemia Classifier
7
+
8
+ ## Model Description
9
+
10
+ This Convolutional Neural Network (CNN) model is designed for the classification of leukemia images into one of four classes. It was developed for the Quito AI Day event by [Sebastian Sarasti](https://www.linkedin.com/in/sebastiansarasti/). The model leverages a series of convolutional layers followed by fully connected layers to process and classify images effectively.
11
+
12
+ ## Model Architecture
13
+
14
+ The model consists of the following layers:
15
+
16
+ - Convolutional Layer: 3 input channels, 128 output channels, 3x3 kernel size, stride 1, padding 1
17
+ - ReLU Activation
18
+ - Max Pooling Layer: 2x2 kernel size
19
+ - Dropout Layer: 0.3 dropout rate
20
+
21
+ - Convolutional Layer: 128 input channels, 64 output channels, 3x3 kernel size, stride 1, padding 1
22
+ - ReLU Activation
23
+ - Max Pooling Layer: 2x2 kernel size
24
+ - Dropout Layer: 0.3 dropout rate
25
+
26
+ - Convolutional Layer: 64 input channels, 32 output channels, 3x3 kernel size, stride 1, padding 1
27
+ - ReLU Activation
28
+ - Max Pooling Layer: 2x2 kernel size
29
+ - Dropout Layer: 0.3 dropout rate
30
+
31
+ - Convolutional Layer: 32 input channels, 8 output channels, 3x3 kernel size, stride 1, padding 1
32
+ - ReLU Activation
33
+ - Max Pooling Layer: 2x2 kernel size
34
+ - Dropout Layer: 0.3 dropout rate
35
+
36
+ - Flatten Layer
37
+
38
+ - Fully Connected Layer: 1568 input features, 512 output features
39
+ - ReLU Activation
40
+ - Dropout Layer: 0.5 dropout rate
41
+
42
+ - Fully Connected Layer: 512 input features, 4 output features
43
+
44
+ ## Dataset
45
+
46
+ The model was trained on the [Leukemia dataset from Kaggle](https://www.kaggle.com/datasets/mehradaria/leukemia), which consists of images labeled into different leukemia types.
47
+
48
+ ## Usage
49
+
50
+ To use this model, you can load it from the Hugging Face Hub as follows:
51
+
52
+ ```python
53
+ from transformers import AutoModel
54
+
55
+ model = AutoModel.from_pretrained("path/to/your/model")