sebastiansarasti commited on
Commit
0e476b2
·
verified ·
1 Parent(s): 1b66cbb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -4,6 +4,47 @@ tags:
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
+ # Model Card: MRI Brain Tumor Classification (EfficientNet-B1)
8
+
9
+ ## Model Details
10
+ - **Model Name**: `MRIModel`
11
+ - **Architecture**: EfficientNet-B1-based model for MRI brain tumor classification
12
+ - **Dataset**: [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset)
13
+ - **Batch Size**: 32
14
+ - **Loss Function**: CrossEntropy Loss
15
+ - **Optimizer**: Adam (learning rate = 1e-3)
16
+ - **Transfer Learning**: No (trained from scratch)
17
+
18
+ ## Model Architecture
19
+ This model is based on **EfficientNet-B1**, a lightweight yet powerful convolutional neural network, and has been adapted for **MRI-based brain tumor classification**.
20
+
21
+ ### **Modifications**
22
+ - **Input Channel Adaptation**: The first convolutional layer is modified to accept single-channel (grayscale) MRI scans.
23
+ - **Classifier Head**: The fully connected (FC) layer is modified to output 756 features.
24
+
25
+ ## Implementation
26
+ ### **Model Definition**
27
+ ```python
28
+ import torch
29
+ import torch.nn as nn
30
+ from torchvision.models import efficientnet_b1
31
+
32
+ class MRIModel(nn.Module, PyTorchModelHubMixin):
33
+ def __init__(self):
34
+ super(MRIModel, self).__init__()
35
+ self.base_model = efficientnet_b1(weights=False) # No pretrained weights
36
+ self.base_model.features[0] = nn.Sequential(
37
+ nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False),
38
+ nn.BatchNorm2d(
39
+ 32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True
40
+ ),
41
+ nn.ReLU6(inplace=True),
42
+ )
43
+ self.base_model.classifier = nn.Linear(1280, 756)
44
+
45
+ def forward(self, x):
46
+ x = self.base_model(x)
47
+ return x
48
+ ```
49
+
50
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: