sebastiansarasti commited on
Commit
fec7f96
·
verified ·
1 Parent(s): 2467ab0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -4,6 +4,63 @@ tags:
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
+ # Model Card: MRI Brain Tumor Classification Model
8
+
9
+ ## Model Details
10
+ - **Architecture**: EfficientNet-B1-based MRI classification model
11
+ - **Dataset**: [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset)
12
+ - **Batch Size**: 32
13
+ - **Loss Function**: Triplet Margin Loss with Cosine Similarity
14
+ - **Optimizer**: Adam (learning rate = 1e-2)
15
+
16
+ ## Model Architecture
17
+ This model is based on **EfficientNet-B1** and has been modified for MRI brain tumor classification. The main adaptations include:
18
+
19
+ ### **Modifications**:
20
+ - **Input Channel Adjustment**: The first convolutional layer is changed to accept single-channel (grayscale) MRI scans.
21
+ - **Classifier Head**: The default classifier is replaced with a custom MLP featuring:
22
+ - Fully connected layers with 1280 → 756 → 256 units.
23
+ - SiLU activation.
24
+ - Batch normalization.
25
+ - Dropout for regularization.
26
+
27
+ ### **Triplet Loss for Metric Learning**:
28
+ The model uses **Triplet Margin Loss** with **Cosine Similarity** to learn an embedding space where MRI images of the same class are closer together, while images from different classes are farther apart.
29
+
30
+ ## Implementation
31
+ ### **Model Definition**
32
+ ```python
33
+ import torch
34
+ import torch.nn as nn
35
+ from torchvision.models import efficientnet_b1
36
+ from torch.nn import TripletMarginWithDistanceLoss
37
+ from torch.nn.functional import cosine_similarity
38
+
39
+ class MRIModel(nn.Module, PyTorchModelHubMixin):
40
+ def __init__(self):
41
+ super(MRIModel, self).__init__()
42
+ self.base_model = efficientnet_b1(weights=False)
43
+ self.base_model.features[0] = nn.Sequential(
44
+ nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False),
45
+ nn.BatchNorm2d(32),
46
+ nn.ReLU6(inplace=True),
47
+ )
48
+ self.base_model.classifier = nn.Sequential(
49
+ nn.Linear(1280, 756),
50
+ nn.SiLU(),
51
+ nn.BatchNorm1d(756),
52
+ nn.Dropout(0.2),
53
+ nn.Linear(756, 256),
54
+ )
55
+
56
+ def forward(self, x):
57
+ return self.base_model(x)
58
+ ```
59
+
60
+ ## Training Configuration
61
+ - Batch Size: 32
62
+ - Loss Function: Triplet Margin Loss (Cosine Similarity)
63
+ - Optimizer: Adam (learning rate = 1e-2)
64
+
65
+
66
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: