Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,172 @@
|
|
1 |
---
|
2 |
language: en
|
3 |
tags:
|
4 |
-
- llama
|
5 |
-
- llama-3.2
|
6 |
-
- function-calling
|
7 |
-
- instruction-tuning
|
8 |
- conversational
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
# NazareAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language: en
|
3 |
tags:
|
|
|
|
|
|
|
|
|
4 |
- conversational
|
5 |
+
- python
|
6 |
+
- programmer
|
7 |
+
license: llama3
|
8 |
+
base_model: unsloth/Llama-3.2-3B-Instruct
|
9 |
+
widget:
|
10 |
+
- example_title: Python Programmer Example
|
11 |
+
messages:
|
12 |
+
- role: system
|
13 |
+
content: >-
|
14 |
+
You are a Python Programmer AI, designed to provide code solutions,
|
15 |
+
technical guidance, and development best practices.
|
16 |
+
- role: user
|
17 |
+
content: Create a function to calculate Fibonacci numbers recursively
|
18 |
+
model-index:
|
19 |
+
- name: NazareAI-Python-Programmer
|
20 |
+
results: []
|
21 |
+
library_name: transformers
|
22 |
+
datasets:
|
23 |
+
- 0xroyce/NazareAI-Python-Programmer
|
24 |
---
|
25 |
|
26 |
+
# NazareAI - Python Programmer
|
27 |
+
|
28 |
+
### Overview
|
29 |
+
**NazareAI** is redefining the workforce with its **Autonomous AI Workforce** solution—tackling scalability, cost, and efficiency challenges in one fell swoop. This demo spotlights the **Python Programmer** AI, a specialized agent engineered to deliver expert-level coding solutions, technical architecture guidance, and implementation best practices for Python-based projects.
|
30 |
+
|
31 |
+
NarazeAI AI Workforce: https://seedgularity.com/nazareai-ai-workforce/
|
32 |
+
|
33 |
+
### Features
|
34 |
+
- **Technical Expertise**
|
35 |
+
Draws from comprehensive knowledge of Python programming, design patterns, and software architecture principles.
|
36 |
+
- **Intelligent Code Generation**
|
37 |
+
Produces clean, efficient, and well-documented code that follows best practices and industry standards.
|
38 |
+
- **Problem-Solving Capability**
|
39 |
+
Analyzes requirements and provides optimal technical solutions while considering performance and scalability.
|
40 |
+
|
41 |
+
### Use Cases
|
42 |
+
1. **Application Development**
|
43 |
+
Build complete Python applications with proper structure, error handling, and documentation.
|
44 |
+
2. **Code Optimization**
|
45 |
+
Analyze existing code and recommend improvements for better performance and maintainability.
|
46 |
+
3. **API Development**
|
47 |
+
Design and implement RESTful APIs using modern Python frameworks like FastAPI or Flask.
|
48 |
+
4. **Technical Documentation**
|
49 |
+
Generate comprehensive documentation including API specs, setup guides, and code documentation.
|
50 |
+
|
51 |
+
## Response Format
|
52 |
+
|
53 |
+
NazareAI Python Programmer provides two types of responses:
|
54 |
+
|
55 |
+
1. **Default Mode**: Provides detailed explanations along with the code, including:
|
56 |
+
- Problem analysis
|
57 |
+
- Solution approach
|
58 |
+
- Code explanation
|
59 |
+
- Implementation considerations
|
60 |
+
- Best practices and recommendations
|
61 |
+
- Usage examples
|
62 |
+
|
63 |
+
2. **Code-Only Mode**: When users add `[CODE ONLY]` at the end of their prompt, it provides:
|
64 |
+
- Clean, production-ready code without explanations
|
65 |
+
- Necessary comments and docstrings
|
66 |
+
- Complete implementation focused on the requested functionality
|
67 |
+
|
68 |
+
### Example Interactions
|
69 |
+
|
70 |
+
#### Default Mode
|
71 |
+
```plaintext
|
72 |
+
User: Create a function to calculate Fibonacci numbers recursively
|
73 |
+
|
74 |
+
AI: To create a recursive function for calculating Fibonacci numbers, we need to understand that the sequence is defined as:
|
75 |
+
- F(0) = 0
|
76 |
+
- F(1) = 1
|
77 |
+
- For n > 1, F(n) = F(n-1) + F(n-2)
|
78 |
+
|
79 |
+
Below is a Python implementation of such a function:
|
80 |
+
|
81 |
+
```python
|
82 |
+
def fibonacci_recursive(n):
|
83 |
+
"""
|
84 |
+
Calculate the nth Fibonacci number recursively.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
n (int): The index of the Fibonacci sequence (0-indexed).
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
int: The nth Fibonacci number.
|
91 |
+
|
92 |
+
Raises:
|
93 |
+
ValueError: If n is negative or not an integer.
|
94 |
+
"""
|
95 |
+
# Error handling for invalid input
|
96 |
+
if not isinstance(n, int):
|
97 |
+
raise TypeError("Input must be an integer.")
|
98 |
+
if n < 0:
|
99 |
+
raise ValueError("Input must be a non-negative integer.")
|
100 |
+
|
101 |
+
# Base cases
|
102 |
+
if n == 0:
|
103 |
+
return 0
|
104 |
+
elif n == 1:
|
105 |
+
return 1
|
106 |
+
|
107 |
+
# Recursive case
|
108 |
+
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
|
109 |
+
|
110 |
+
# Example usage with error handling
|
111 |
+
if __name__ == "__main__":
|
112 |
+
try:
|
113 |
+
print(fibonacci_recursive(10)) # Output: 55 (Fibonacci number at index 10)
|
114 |
+
print(fibonacci_recursive(-5)) # Raises ValueError
|
115 |
+
except Exception as e:
|
116 |
+
print("Error:", e)
|
117 |
+
|
118 |
+
### Key Technical Notes:
|
119 |
+
|
120 |
+
1. **Recursion**: This implementation uses the recursive definition of Fibonacci numbers to calculate each term by adding two preceding terms.
|
121 |
+
|
122 |
+
2. **Time Complexity**: The time complexity for calculating `fibonacci_recursive` is exponential, O(2^n), due to its recursive nature and constant space used per
|
123 |
+
call (`O(n)`). For large inputs, this can lead to performance issues.
|
124 |
+
|
125 |
+
3. **Space Complexity**: Space usage is also linear in terms of recursion depth (since each function call has a stack frame).
|
126 |
+
|
127 |
+
4. **Memoization or Iteration**: To improve efficiency, consider using memoization or an iterative approach like the "Matrix Exponentiation" method which would
|
128 |
+
reduce time complexity to O(log n) and space complexity to O(1). Here’s how you could implement it iteratively:
|
129 |
+
|
130 |
+
```python
|
131 |
+
def fibonacci_iterative(n):
|
132 |
+
if not isinstance(n, int):
|
133 |
+
raise TypeError("Input must be an integer.")
|
134 |
+
if n < 0:
|
135 |
+
raise ValueError("Input must be a non-negative integer.")
|
136 |
+
|
137 |
+
# Initialize variables to store previous two Fibonacci numbers
|
138 |
+
prev1, prev2 = 0, 1
|
139 |
+
|
140 |
+
for _ in range(2, n + 1):
|
141 |
+
curr = prev1 + prev2
|
142 |
+
prev1 = prev2
|
143 |
+
prev2 = curr
|
144 |
+
|
145 |
+
return curr
|
146 |
+
|
147 |
+
# Example usage with error handling remains unchanged.
|
148 |
+
|
149 |
+
This iterative approach is more efficient and suitable for larger inputs while retaining the same functionality as your recursive implementation.
|
150 |
+
```
|
151 |
+
|
152 |
+
#### Code-Only Mode
|
153 |
+
```plaintext
|
154 |
+
User: Create a function to calculate Fibonacci numbers recursively [CODE ONLY]
|
155 |
+
|
156 |
+
AI:
|
157 |
+
```python
|
158 |
+
def fibonacci_recursive(n):
|
159 |
+
if not isinstance(n, int):
|
160 |
+
raise TypeError("Input must be an integer.")
|
161 |
+
if n < 0:
|
162 |
+
raise ValueError("Input must be a non-negative integer.")
|
163 |
+
|
164 |
+
# Base cases
|
165 |
+
if n == 0:
|
166 |
+
return 0
|
167 |
+
elif n == 1:
|
168 |
+
return 1
|
169 |
+
|
170 |
+
# Recursive case
|
171 |
+
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
|
172 |
+
```
|