File size: 1,246 Bytes
078bb98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- sefaozalpadl/autonlp-data-election_relevancy_analysis
co2_eq_emissions: 1.3248523193990855
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 23315155
- CO2 Emissions (in grams): 1.3248523193990855
## Validation Metrics
- Loss: 0.4240806996822357
- Accuracy: 0.8173913043478261
- Precision: 0.8837209302325582
- Recall: 0.8085106382978723
- AUC: 0.8882580285281696
- F1: 0.8444444444444444
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sefaozalpadl/autonlp-election_relevancy_analysis-23315155
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("sefaozalpadl/autonlp-election_relevancy_analysis-23315155", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("sefaozalpadl/autonlp-election_relevancy_analysis-23315155", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |