segestic commited on
Commit
e0d60ee
1 Parent(s): c0f806e

first commit read_me

Browse files
Files changed (1) hide show
  1. README.md +73 -3
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - nlp
9
+ - Medicine
10
+ datasets:
11
+ - medalpaca/medical_meadow_health_advice
12
+ - medalpaca/medical_meadow_mediqa
13
+ - medalpaca/medical_meadow_mmmlu
14
+ - medalpaca/medical_meadow_medical_flashcards
15
+ - medalpaca/medical_meadow_wikidoc_patient_information
16
+ - medalpaca/medical_meadow_wikidoc
17
+ - medalpaca/medical_meadow_pubmed_causal
18
+ - medalpaca/medical_meadow_medqa
19
+ - medalpaca/medical_meadow_cord19
20
+ base_model: microsoft/phi-2
21
+
22
+ ---
23
+
24
+ ## Model Summary
25
+ Phi2_med_seg is a fine-tuned version of the Phi-2 model, specifically optimized for medical applications. This model has been trained using the Trainer framework on several different datasets from the MedAlpaca collection, which focuses on medical question answering and conversational AI.
26
+ This model can answer information about different excplicit ideas in medicine
27
+
28
+
29
+ ## How to Get Started with the Model
30
+
31
+
32
+ ## Sample Code
33
+
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+
39
+ torch.set_default_device("cuda")
40
+
41
+ model = AutoModelForCausalLM.from_pretrained("segestic/phi2_medical_seg", torch_dtype="auto", trust_remote_code=True)
42
+ tokenizer = AutoTokenizer.from_pretrained("segestic/phi2_medical_seg", trust_remote_code=True)
43
+
44
+ inputs = tokenizer('''def print_prime(n):
45
+ """
46
+ What is Medcine?
47
+ """''', return_tensors="pt", return_attention_mask=False)
48
+
49
+ outputs = model.generate(**inputs, max_length=200)
50
+ text = tokenizer.batch_decode(outputs)[0]
51
+ print(text)
52
+ ```
53
+
54
+
55
+ ## Training
56
+ The fine-tuning process involved leveraging various medical datasets to enhance the model's ability to understand and generate relevant medical information. This approach aims to improve the model's performance in medical contexts, making it a valuable tool for healthcare professionals and researchers alike. By utilizing the Trainer framework, Phi2_med_seg benefits from advanced training techniques that help refine its responses and accuracy in medical scenarios.
57
+
58
+ ### Model
59
+
60
+ * Architecture: a Transformer-based model with next-word prediction objective
61
+
62
+ * Context length: 2048 tokens
63
+
64
+
65
+
66
+ ### Software
67
+
68
+ * [PyTorch](https://github.com/pytorch/pytorch)
69
+
70
+ * [DeepSpeed](https://github.com/microsoft/DeepSpeed)
71
+
72
+ * [Flash-Attention](https://github.com/HazyResearch/flash-attention)
73
+