Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
library_name: diffusers
|
3 |
-
base_model: segmind/
|
4 |
tags:
|
5 |
- lora
|
6 |
- text-to-image
|
@@ -8,18 +8,18 @@ license: openrail++
|
|
8 |
inference: false
|
9 |
---
|
10 |
|
11 |
-
# Latent Consistency Model (LCM) LoRA:
|
12 |
|
13 |
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
|
14 |
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
|
15 |
|
16 |
-
It is a distilled consistency adapter for [`segmind/
|
17 |
to reduce the number of inference steps to only between **2 - 8 steps**.
|
18 |
|
19 |
| Model | Params / M |
|
20 |
|----------------------------------------------------------------------------|------------|
|
21 |
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
|
22 |
-
| [**
|
23 |
| [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197 |
|
24 |
|
25 |
## Usage
|
@@ -35,15 +35,15 @@ pip install --upgrade diffusers transformers accelerate peft
|
|
35 |
|
36 |
### Text-to-Image
|
37 |
|
38 |
-
Let's load the base model `segmind/
|
39 |
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
|
40 |
|
41 |
```python
|
42 |
import torch
|
43 |
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
44 |
|
45 |
-
model_id = "segmind/
|
46 |
-
adapter_id = "segmind/
|
47 |
|
48 |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
49 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
@@ -60,4 +60,4 @@ prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
60 |
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
61 |
```
|
62 |
|
63 |
-
![
|
|
|
1 |
---
|
2 |
library_name: diffusers
|
3 |
+
base_model: segmind/Segmind-Vega
|
4 |
tags:
|
5 |
- lora
|
6 |
- text-to-image
|
|
|
8 |
inference: false
|
9 |
---
|
10 |
|
11 |
+
# Latent Consistency Model (LCM) LoRA: Segmind-Vega
|
12 |
|
13 |
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
|
14 |
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
|
15 |
|
16 |
+
It is a distilled consistency adapter for [`segmind/Segmind-Vega`]("https://huggingface.co/segmind/Segmind_Vega") that allows
|
17 |
to reduce the number of inference steps to only between **2 - 8 steps**.
|
18 |
|
19 |
| Model | Params / M |
|
20 |
|----------------------------------------------------------------------------|------------|
|
21 |
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
|
22 |
+
| [**Segmind-VegaRT**](https://huggingface.co/segmind/Segmind-VegaRT) | **62.7** |
|
23 |
| [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197 |
|
24 |
|
25 |
## Usage
|
|
|
35 |
|
36 |
### Text-to-Image
|
37 |
|
38 |
+
Let's load the base model `segmind/Segmind-Vega` first. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
|
39 |
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
|
40 |
|
41 |
```python
|
42 |
import torch
|
43 |
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
44 |
|
45 |
+
model_id = "segmind/Segmind-Vega"
|
46 |
+
adapter_id = "segmind/Segmind-VegaRT"
|
47 |
|
48 |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
49 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
|
60 |
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
61 |
```
|
62 |
|
63 |
+
![Segmind-VegaRT Image]()
|