Text-to-Image
Diffusers
lora
Warlord-K commited on
Commit
24212fc
·
1 Parent(s): c45e7b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  library_name: diffusers
3
- base_model: segmind/SSD-1B
4
  tags:
5
  - lora
6
  - text-to-image
@@ -8,18 +8,18 @@ license: openrail++
8
  inference: false
9
  ---
10
 
11
- # Latent Consistency Model (LCM) LoRA: SSD-Tiny
12
 
13
  Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
14
  by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
15
 
16
- It is a distilled consistency adapter for [`segmind/SSD-Tiny`]("https://huggingface.co/segmind/SSD-1B") that allows
17
  to reduce the number of inference steps to only between **2 - 8 steps**.
18
 
19
  | Model | Params / M |
20
  |----------------------------------------------------------------------------|------------|
21
  | [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
22
- | [**lcm-lora-ssd-tiny**](https://huggingface.co/segmind/lcm-lora-ssd-tiny) | **62.7** |
23
  | [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197 |
24
 
25
  ## Usage
@@ -35,15 +35,15 @@ pip install --upgrade diffusers transformers accelerate peft
35
 
36
  ### Text-to-Image
37
 
38
- Let's load the base model `segmind/SSD-Tiny` first. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
39
  Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
40
 
41
  ```python
42
  import torch
43
  from diffusers import LCMScheduler, AutoPipelineForText2Image
44
 
45
- model_id = "segmind/SSD-Tiny"
46
- adapter_id = "segmind/lcm-lora-ssd-tiny"
47
 
48
  pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
49
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
@@ -60,4 +60,4 @@ prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
60
  image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
61
  ```
62
 
63
- ![SSD-Tiny LCM LoRA Image]()
 
1
  ---
2
  library_name: diffusers
3
+ base_model: segmind/Segmind-Vega
4
  tags:
5
  - lora
6
  - text-to-image
 
8
  inference: false
9
  ---
10
 
11
+ # Latent Consistency Model (LCM) LoRA: Segmind-Vega
12
 
13
  Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
14
  by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
15
 
16
+ It is a distilled consistency adapter for [`segmind/Segmind-Vega`]("https://huggingface.co/segmind/Segmind_Vega") that allows
17
  to reduce the number of inference steps to only between **2 - 8 steps**.
18
 
19
  | Model | Params / M |
20
  |----------------------------------------------------------------------------|------------|
21
  | [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
22
+ | [**Segmind-VegaRT**](https://huggingface.co/segmind/Segmind-VegaRT) | **62.7** |
23
  | [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197 |
24
 
25
  ## Usage
 
35
 
36
  ### Text-to-Image
37
 
38
+ Let's load the base model `segmind/Segmind-Vega` first. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
39
  Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
40
 
41
  ```python
42
  import torch
43
  from diffusers import LCMScheduler, AutoPipelineForText2Image
44
 
45
+ model_id = "segmind/Segmind-Vega"
46
+ adapter_id = "segmind/Segmind-VegaRT"
47
 
48
  pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
49
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
 
60
  image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
61
  ```
62
 
63
+ ![Segmind-VegaRT Image]()