Text-to-Image
Diffusers
lora
Warlord-K commited on
Commit
57b0265
·
1 Parent(s): 4196821

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: diffusers
3
+ base_model: segmind/SSD-1B
4
+ tags:
5
+ - lora
6
+ - text-to-image
7
+ license: openrail++
8
+ inference: false
9
+ ---
10
+
11
+ # Latent Consistency Model (LCM) LoRA: SSD-Tiny
12
+
13
+ Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
14
+ by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
15
+
16
+ It is a distilled consistency adapter for [`segmind/SSD-Tiny`]("https://huggingface.co/segmind/SSD-1B") that allows
17
+ to reduce the number of inference steps to only between **2 - 8 steps**.
18
+
19
+ | Model | Params / M |
20
+ |----------------------------------------------------------------------------|------------|
21
+ | [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
22
+ | [**lcm-lora-ssd-tiny**](https://huggingface.co/segmind/lcm-lora-ssd-tiny) | **62.7** |
23
+ | [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197 |
24
+
25
+ ## Usage
26
+
27
+ LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first
28
+ install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
29
+ audio dataset from the Hugging Face Hub:
30
+
31
+ ```bash
32
+ pip install --upgrade pip
33
+ pip install --upgrade diffusers transformers accelerate peft
34
+ ```
35
+
36
+ ### Text-to-Image
37
+
38
+ Let's load the base model `segmind/SSD-Tiny` first. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
39
+ Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
40
+
41
+ ```python
42
+ import torch
43
+ from diffusers import LCMScheduler, AutoPipelineForText2Image
44
+
45
+ model_id = "segmind/SSD-Tiny"
46
+ adapter_id = "segmind/lcm-lora-ssd-tiny"
47
+
48
+ pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
49
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
50
+ pipe.to("cuda")
51
+
52
+ # load and fuse lcm lora
53
+ pipe.load_lora_weights(adapter_id)
54
+ pipe.fuse_lora()
55
+
56
+
57
+ prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
58
+
59
+ # disable guidance_scale by passing 0
60
+ image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
61
+ ```
62
+
63
+ ![SSD-Tiny LCM LoRA Image]()