Text-to-Image
Diffusers
StableDiffusionPipeline
stable-diffusion
stable-diffusion-diffusers
Inference Endpoints
mixy89 commited on
Commit
35255b0
·
1 Parent(s): deb9503

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -1,3 +1,67 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: creativeml-openrail-m
3
+ base_model: SG161222/Realistic_Vision_V4.0
4
+ datasets:
5
+ - recastai/LAION-art-EN-improved-captions
6
+ tags:
7
+ - stable-diffusion
8
+ - stable-diffusion-diffusers
9
+ - text-to-image
10
+ - diffusers
11
+ inference: true
12
  ---
13
+
14
+ # Text-to-image Distillation
15
+
16
+ This pipeline was distilled from **SG161222/Realistic_Vision_V4.0** on a Subset of **recastai/LAION-art-EN-improved-captions** dataset. Below are some example images generated with the tiny-sd model.
17
+
18
+ ![val_imgs_grid](./grid_tiny.png)
19
+
20
+
21
+ This Pipeline is based upon [the paper](https://arxiv.org/pdf/2305.15798.pdf). Training Code can be found [here](https://github.com/segmind/BKSDM).
22
+
23
+ ## Pipeline usage
24
+
25
+ You can use the pipeline like so:
26
+
27
+ ```python
28
+ from diffusers import DiffusionPipeline
29
+ import torch
30
+
31
+ pipeline = DiffusionPipeline.from_pretrained("segmind/tiny-sd-mxtune", torch_dtype=torch.float16)
32
+ prompt = "Portrait of a pretty girl"
33
+ image = pipeline(prompt).images[0]
34
+ image.save("my_image.png")
35
+ ```
36
+
37
+ ## Training info
38
+
39
+ These are the key hyperparameters used during training:
40
+
41
+ * Steps: 125000
42
+ * Learning rate: 1e-4
43
+ * Batch size: 32
44
+ * Gradient accumulation steps: 4
45
+ * Image resolution: 512
46
+ * Mixed-precision: fp16
47
+
48
+ ## Finetune info
49
+
50
+ These are the key hyperparameters used during training:
51
+
52
+ * Steps: 8000 / 100000
53
+ * Learning rate: 1e-5
54
+ * Batch size: 24
55
+ * Gradient accumulation steps: 1
56
+ * Image resolution: 768
57
+ * Mixed-precision: fp16
58
+
59
+ ## Speed Comparision
60
+
61
+ We have observed that the distilled models are upto 80% faster than the Base SD1.5 Models. Below is a comparision on an A100 80GB.
62
+
63
+ ![graph](./graph.png)
64
+ ![comparision](./comparision1.png)
65
+
66
+ Below is the code for benchmarking the speeds
67
+