|
|
|
|
|
import os |
|
import io |
|
import tempfile |
|
import numpy as np |
|
from PIL import Image |
|
from DepthFlow import DepthScene |
|
from DepthFlow.Motion import Presets |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
""" |
|
Initialize the handler and load necessary resources. |
|
This method is called once when the service starts. |
|
""" |
|
|
|
self.depthflow = DepthScene(backend='headless') |
|
|
|
def preprocess(self, inputs): |
|
""" |
|
Preprocess the input data. |
|
|
|
Args: |
|
inputs (dict): The input payload containing the image data. |
|
|
|
Returns: |
|
str: Path to the preprocessed image file. |
|
""" |
|
if 'image' not in inputs: |
|
raise ValueError("Missing 'image' in inputs") |
|
|
|
image_bytes = inputs['image'].read() |
|
image = Image.open(io.BytesIO(image_bytes)).convert('RGB') |
|
|
|
|
|
temp_image_file = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) |
|
image.save(temp_image_file.name) |
|
|
|
return temp_image_file.name |
|
|
|
def inference(self, image_path): |
|
""" |
|
Perform the main inference logic. |
|
|
|
Args: |
|
image_path (str): Path to the preprocessed image file. |
|
|
|
Returns: |
|
str: Path to the output video file. |
|
""" |
|
|
|
self.depthflow.input(image=image_path) |
|
|
|
|
|
self.depthflow.state.height = 1 |
|
self.depthflow.state.zoom = 1.1 |
|
self.depthflow.state.dolly = 1 |
|
self.depthflow.state.dof_enable = True |
|
self.depthflow.state.dof_intensity = 1.2 |
|
self.depthflow.state.vignette_intensity = 40 |
|
|
|
|
|
self.depthflow.add_animation(Presets.Dolly()) |
|
|
|
|
|
temp_video_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) |
|
self.depthflow.update() |
|
self.depthflow.main(output=temp_video_file.name) |
|
|
|
return temp_video_file.name |
|
|
|
def postprocess(self, video_path): |
|
""" |
|
Postprocess the output and prepare the response. |
|
|
|
Args: |
|
video_path (str): Path to the generated video file. |
|
|
|
Returns: |
|
dict: Response containing the video file. |
|
""" |
|
with open(video_path, 'rb') as f: |
|
video_bytes = f.read() |
|
|
|
|
|
os.remove(video_path) |
|
|
|
return { |
|
'video': video_bytes |
|
} |
|
|
|
def __call__(self, data): |
|
""" |
|
Handle the incoming request. |
|
|
|
Args: |
|
inputs (dict): The input payload. |
|
|
|
Returns: |
|
dict: The response payload. |
|
""" |
|
try: |
|
|
|
image_path = self.preprocess(data) |
|
|
|
|
|
video_path = self.inference(image_path) |
|
|
|
|
|
result = self.postprocess(video_path) |
|
|
|
|
|
os.remove(image_path) |
|
|
|
return result |
|
except Exception as e: |
|
return {'error': str(e)} |
|
|