selfconstruct3d commited on
Commit
93e5a9c
·
verified ·
1 Parent(s): 99f7952

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -19,7 +19,7 @@ Load the pretrained AITSecNER model directly from Hugging Face:
19
  ```python
20
  from gliner import GLiNER
21
 
22
- model = GLiNER.from_pretrained(\"selfconstruct3d/AITSecNER\", load_tokenizer=True)
23
  ```
24
 
25
  ### Predict Entities
@@ -28,10 +28,10 @@ Define the input text and entity labels you wish to extract:
28
 
29
  ```python
30
  # Example input text
31
- text = \"\"\"
32
  Upon opening Emotet maldocs, victims are greeted with fake Microsoft 365 prompt that states
33
  “THIS DOCUMENT IS PROTECTED,” and instructs victims on how to enable macros.
34
- \"\"\"
35
 
36
  # Entity labels
37
  labels = [
@@ -44,7 +44,7 @@ entities = model.predict_entities(text, labels, threshold=0.5)
44
 
45
  # Display results
46
  for entity in entities:
47
- print(f\"{entity['text']} => {entity['label']}\")
48
  ```
49
 
50
  ### Sample Output
 
19
  ```python
20
  from gliner import GLiNER
21
 
22
+ model = GLiNER.from_pretrained("selfconstruct3d/AITSecNER", load_tokenizer=True)
23
  ```
24
 
25
  ### Predict Entities
 
28
 
29
  ```python
30
  # Example input text
31
+ text = """
32
  Upon opening Emotet maldocs, victims are greeted with fake Microsoft 365 prompt that states
33
  “THIS DOCUMENT IS PROTECTED,” and instructs victims on how to enable macros.
34
+ """
35
 
36
  # Entity labels
37
  labels = [
 
44
 
45
  # Display results
46
  for entity in entities:
47
+ print(f"{entity['text']} => {entity['label']}")
48
  ```
49
 
50
  ### Sample Output