selfconstruct3d commited on
Commit
6b12fe9
·
verified ·
1 Parent(s): e899270

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -6
README.md CHANGED
@@ -62,11 +62,6 @@ from huggingface_hub import hf_hub_download
62
  import json
63
 
64
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
65
- # Load explicitly your fine-tuned MPNet model
66
- classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)
67
-
68
- # Load explicitly your tokenizer
69
- tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
70
 
71
 
72
  label_to_groupid_file = hf_hub_download(
@@ -77,6 +72,12 @@ label_to_groupid_file = hf_hub_download(
77
  with open(label_to_groupid_file, "r") as f:
78
  label_to_groupid = json.load(f)
79
 
 
 
 
 
 
 
80
  def predict_group(sentence):
81
  classifier_model.eval()
82
  encoding = tokenizer(
@@ -109,13 +110,25 @@ Predicted GroupID: G0001
109
  ```python
110
  import torch
111
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
112
 
113
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
114
 
 
 
 
 
 
 
 
 
 
 
115
  # Load your fine-tuned classification model
116
  model_name = "selfconstruct3d/AttackGroup-MPNET"
117
  tokenizer = AutoTokenizer.from_pretrained(model_name)
118
- classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
119
 
120
  def get_embedding(sentence):
121
  classifier_model.eval()
 
62
  import json
63
 
64
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
 
 
 
65
 
66
 
67
  label_to_groupid_file = hf_hub_download(
 
72
  with open(label_to_groupid_file, "r") as f:
73
  label_to_groupid = json.load(f)
74
 
75
+ # Load explicitly your fine-tuned MPNet model
76
+ classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET", num_labels=len(label_to_groupid)).to(device)
77
+
78
+ # Load explicitly your tokenizer
79
+ tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
80
+
81
  def predict_group(sentence):
82
  classifier_model.eval()
83
  encoding = tokenizer(
 
110
  ```python
111
  import torch
112
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
113
+ from huggingface_hub import hf_hub_download
114
+ import json
115
 
116
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
117
 
118
+
119
+ label_to_groupid_file = hf_hub_download(
120
+ repo_id="selfconstruct3d/AttackGroup-MPNET",
121
+ filename="label_to_groupid.json"
122
+ )
123
+
124
+ with open(label_to_groupid_file, "r") as f:
125
+ label_to_groupid = json.load(f)
126
+
127
+
128
  # Load your fine-tuned classification model
129
  model_name = "selfconstruct3d/AttackGroup-MPNET"
130
  tokenizer = AutoTokenizer.from_pretrained(model_name)
131
+ classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(label_to_groupid)).to(device)
132
 
133
  def get_embedding(sentence):
134
  classifier_model.eval()