Update README.md
Browse files
README.md
CHANGED
@@ -62,11 +62,6 @@ from huggingface_hub import hf_hub_download
|
|
62 |
import json
|
63 |
|
64 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
-
# Load explicitly your fine-tuned MPNet model
|
66 |
-
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)
|
67 |
-
|
68 |
-
# Load explicitly your tokenizer
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
|
70 |
|
71 |
|
72 |
label_to_groupid_file = hf_hub_download(
|
@@ -77,6 +72,12 @@ label_to_groupid_file = hf_hub_download(
|
|
77 |
with open(label_to_groupid_file, "r") as f:
|
78 |
label_to_groupid = json.load(f)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def predict_group(sentence):
|
81 |
classifier_model.eval()
|
82 |
encoding = tokenizer(
|
@@ -109,13 +110,25 @@ Predicted GroupID: G0001
|
|
109 |
```python
|
110 |
import torch
|
111 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
112 |
|
113 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
# Load your fine-tuned classification model
|
116 |
model_name = "selfconstruct3d/AttackGroup-MPNET"
|
117 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
118 |
-
classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
|
119 |
|
120 |
def get_embedding(sentence):
|
121 |
classifier_model.eval()
|
|
|
62 |
import json
|
63 |
|
64 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
label_to_groupid_file = hf_hub_download(
|
|
|
72 |
with open(label_to_groupid_file, "r") as f:
|
73 |
label_to_groupid = json.load(f)
|
74 |
|
75 |
+
# Load explicitly your fine-tuned MPNet model
|
76 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET", num_labels=len(label_to_groupid)).to(device)
|
77 |
+
|
78 |
+
# Load explicitly your tokenizer
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
|
80 |
+
|
81 |
def predict_group(sentence):
|
82 |
classifier_model.eval()
|
83 |
encoding = tokenizer(
|
|
|
110 |
```python
|
111 |
import torch
|
112 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
113 |
+
from huggingface_hub import hf_hub_download
|
114 |
+
import json
|
115 |
|
116 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
117 |
|
118 |
+
|
119 |
+
label_to_groupid_file = hf_hub_download(
|
120 |
+
repo_id="selfconstruct3d/AttackGroup-MPNET",
|
121 |
+
filename="label_to_groupid.json"
|
122 |
+
)
|
123 |
+
|
124 |
+
with open(label_to_groupid_file, "r") as f:
|
125 |
+
label_to_groupid = json.load(f)
|
126 |
+
|
127 |
+
|
128 |
# Load your fine-tuned classification model
|
129 |
model_name = "selfconstruct3d/AttackGroup-MPNET"
|
130 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
131 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(label_to_groupid)).to(device)
|
132 |
|
133 |
def get_embedding(sentence):
|
134 |
classifier_model.eval()
|