--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: microsoft/swin-large-patch4-window7-224-in22k model-index: - name: blood-swin-base-finetuned-wandb results: [] --- # blood-swin-base-finetuned-wandb This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1036 - Accuracy: 0.9649 - Precision: 0.9627 - Recall: 0.9616 - F1: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5141 | 1.0 | 187 | 0.2833 | 0.9065 | 0.8954 | 0.8949 | 0.8873 | | 0.4176 | 2.0 | 374 | 0.1986 | 0.9311 | 0.9243 | 0.9209 | 0.9182 | | 0.3454 | 3.0 | 561 | 0.1567 | 0.9504 | 0.9427 | 0.9397 | 0.9403 | | 0.3228 | 4.0 | 748 | 0.1849 | 0.9357 | 0.9232 | 0.9426 | 0.9283 | | 0.3382 | 5.0 | 935 | 0.1627 | 0.9398 | 0.9302 | 0.9397 | 0.9321 | | 0.3363 | 6.0 | 1122 | 0.1414 | 0.9509 | 0.9498 | 0.9442 | 0.9456 | | 0.2981 | 7.0 | 1309 | 0.1117 | 0.9544 | 0.9458 | 0.9542 | 0.9480 | | 0.2214 | 8.0 | 1496 | 0.1131 | 0.9650 | 0.9642 | 0.9584 | 0.9610 | | 0.1928 | 9.0 | 1683 | 0.0966 | 0.9650 | 0.9632 | 0.9628 | 0.9624 | | 0.1901 | 10.0 | 1870 | 0.0775 | 0.9714 | 0.9690 | 0.9699 | 0.9692 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2