--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: microsoft/swin-large-patch4-window7-224-in22k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: breastmnist-swin-base-finetuned results: [] --- # breastmnist-swin-base-finetuned This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Accuracy: 0.8526 - Precision: 0.8162 - Recall: 0.8014 - F1: 0.8082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9143 | 8 | 0.5069 | 0.7436 | 0.8701 | 0.5238 | 0.4708 | | 0.6976 | 1.9429 | 17 | 0.4591 | 0.8590 | 0.8190 | 0.8283 | 0.8234 | | 0.5351 | 2.9714 | 26 | 0.3745 | 0.8846 | 0.8667 | 0.8308 | 0.8462 | | 0.4998 | 4.0 | 35 | 0.3243 | 0.8974 | 0.8697 | 0.8697 | 0.8697 | | 0.4569 | 4.9143 | 43 | 0.4070 | 0.8590 | 0.8306 | 0.7982 | 0.8120 | | 0.4182 | 5.9429 | 52 | 0.3801 | 0.8718 | 0.8439 | 0.8221 | 0.8319 | | 0.4432 | 6.9714 | 61 | 0.3071 | 0.8718 | 0.8371 | 0.8371 | 0.8371 | | 0.3988 | 8.0 | 70 | 0.3205 | 0.8718 | 0.8332 | 0.8521 | 0.8417 | | 0.3988 | 8.9143 | 78 | 0.3239 | 0.8846 | 0.8506 | 0.8609 | 0.8555 | | 0.3993 | 9.1429 | 80 | 0.3214 | 0.8846 | 0.8506 | 0.8609 | 0.8555 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1