--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google/vit-base-patch16-224-in21k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: breastmnist-vit-base-finetuned results: [] --- # breastmnist-vit-base-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3129 - Accuracy: 0.8782 - Precision: 0.8971 - Recall: 0.7888 - F1: 0.8232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9143 | 8 | 0.4751 | 0.7821 | 0.8851 | 0.5952 | 0.5951 | | 0.5516 | 1.9429 | 17 | 0.4166 | 0.8462 | 0.8091 | 0.7895 | 0.7983 | | 0.478 | 2.9714 | 26 | 0.3676 | 0.8205 | 0.7792 | 0.7419 | 0.7565 | | 0.4617 | 4.0 | 35 | 0.3180 | 0.8718 | 0.8698 | 0.7920 | 0.8194 | | 0.4208 | 4.9143 | 43 | 0.4562 | 0.8590 | 0.8173 | 0.8584 | 0.8325 | | 0.3759 | 5.9429 | 52 | 0.3780 | 0.8718 | 0.8332 | 0.8521 | 0.8417 | | 0.3689 | 6.9714 | 61 | 0.2993 | 0.8846 | 0.9018 | 0.8008 | 0.8342 | | 0.3322 | 8.0 | 70 | 0.2785 | 0.8718 | 0.8698 | 0.7920 | 0.8194 | | 0.3322 | 8.9143 | 78 | 0.2700 | 0.8846 | 0.9018 | 0.8008 | 0.8342 | | 0.3242 | 9.1429 | 80 | 0.2690 | 0.8846 | 0.9018 | 0.8008 | 0.8342 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1