--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: google/vit-base-patch16-224-in21k model-index: - name: chest-vit-base-finetuned results: [] --- # chest-vit-base-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0982 - Accuracy: 0.9639 - Precision: 0.9419 - Recall: 0.9703 - F1: 0.9548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.211 | 0.99 | 63 | 0.1140 | 0.9605 | 0.9401 | 0.9616 | 0.9501 | | 0.1911 | 1.99 | 127 | 0.1517 | 0.9330 | 0.8989 | 0.9483 | 0.9186 | | 0.1695 | 3.0 | 191 | 0.1163 | 0.9579 | 0.9354 | 0.9609 | 0.9471 | | 0.1556 | 4.0 | 255 | 0.1159 | 0.9571 | 0.9669 | 0.9220 | 0.9417 | | 0.173 | 4.99 | 318 | 0.1166 | 0.9502 | 0.9229 | 0.9578 | 0.9381 | | 0.1485 | 5.99 | 382 | 0.0825 | 0.9717 | 0.9578 | 0.9702 | 0.9638 | | 0.1854 | 7.0 | 446 | 0.0878 | 0.9717 | 0.9578 | 0.9702 | 0.9638 | | 0.1353 | 8.0 | 510 | 0.1060 | 0.9588 | 0.9351 | 0.9647 | 0.9484 | | 0.1196 | 8.99 | 573 | 0.0882 | 0.9691 | 0.9527 | 0.9695 | 0.9607 | | 0.1218 | 9.88 | 630 | 0.0982 | 0.9639 | 0.9419 | 0.9703 | 0.9548 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2