--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: microsoft/swin-large-patch4-window7-224-in22k model-index: - name: derma-swin-large-finetuned results: [] --- # derma-swin-large-finetuned This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5530 - Accuracy: 0.7875 - Precision: 0.6308 - Recall: 0.6101 - F1: 0.6150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8516 | 1.0 | 109 | 0.7470 | 0.7547 | 0.5456 | 0.3914 | 0.4188 | | 0.7738 | 2.0 | 219 | 0.8953 | 0.7168 | 0.4225 | 0.4459 | 0.3577 | | 0.6994 | 3.0 | 328 | 0.6593 | 0.7607 | 0.6257 | 0.5059 | 0.5105 | | 0.6731 | 4.0 | 438 | 0.6145 | 0.7717 | 0.6322 | 0.5001 | 0.5383 | | 0.7266 | 5.0 | 547 | 0.6839 | 0.7398 | 0.5520 | 0.5344 | 0.4935 | | 0.6388 | 6.0 | 657 | 0.6243 | 0.7667 | 0.6117 | 0.5063 | 0.5338 | | 0.6495 | 7.0 | 766 | 0.6161 | 0.7827 | 0.6357 | 0.6153 | 0.6163 | | 0.5639 | 8.0 | 876 | 0.5752 | 0.7836 | 0.6018 | 0.5912 | 0.5931 | | 0.6012 | 9.0 | 985 | 0.5508 | 0.7926 | 0.6303 | 0.6195 | 0.6176 | | 0.5468 | 9.95 | 1090 | 0.5665 | 0.7856 | 0.6470 | 0.6288 | 0.6355 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2