Model save
Browse files
README.md
CHANGED
@@ -12,22 +12,22 @@ metrics:
|
|
12 |
- f1
|
13 |
base_model: google/vit-base-patch16-224-in21k
|
14 |
model-index:
|
15 |
-
- name: organc-
|
16 |
results: []
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
should probably proofread and complete it, then remove this comment. -->
|
21 |
|
22 |
-
# organc-
|
23 |
|
24 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
-
- Precision: 0.
|
29 |
-
- Recall: 0.
|
30 |
-
- F1: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -61,16 +61,16 @@ The following hyperparameters were used during training:
|
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
12 |
- f1
|
13 |
base_model: google/vit-base-patch16-224-in21k
|
14 |
model-index:
|
15 |
+
- name: organc-vit-base-finetuned
|
16 |
results: []
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
should probably proofread and complete it, then remove this comment. -->
|
21 |
|
22 |
+
# organc-vit-base-finetuned
|
23 |
|
24 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0732
|
27 |
+
- Accuracy: 0.9808
|
28 |
+
- Precision: 0.9830
|
29 |
+
- Recall: 0.9826
|
30 |
+
- F1: 0.9825
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
+
| 0.6525 | 1.0 | 203 | 0.2025 | 0.9327 | 0.9260 | 0.9130 | 0.9091 |
|
65 |
+
| 0.765 | 2.0 | 406 | 0.2110 | 0.9377 | 0.9441 | 0.9289 | 0.9344 |
|
66 |
+
| 0.6514 | 3.0 | 609 | 0.2026 | 0.9490 | 0.9457 | 0.9442 | 0.9428 |
|
67 |
+
| 0.6405 | 4.0 | 813 | 0.2056 | 0.9289 | 0.9481 | 0.9175 | 0.9267 |
|
68 |
+
| 0.6514 | 5.0 | 1016 | 0.1362 | 0.9523 | 0.9459 | 0.9385 | 0.9382 |
|
69 |
+
| 0.5778 | 6.0 | 1219 | 0.0787 | 0.9770 | 0.9739 | 0.9746 | 0.9737 |
|
70 |
+
| 0.4759 | 7.0 | 1422 | 0.0959 | 0.9724 | 0.9744 | 0.9693 | 0.9714 |
|
71 |
+
| 0.482 | 8.0 | 1626 | 0.0743 | 0.9762 | 0.9737 | 0.9737 | 0.9733 |
|
72 |
+
| 0.3729 | 9.0 | 1829 | 0.0903 | 0.9758 | 0.9778 | 0.9754 | 0.9762 |
|
73 |
+
| 0.3705 | 9.99 | 2030 | 0.0732 | 0.9808 | 0.9830 | 0.9826 | 0.9825 |
|
74 |
|
75 |
|
76 |
### Framework versions
|