--- license: other base_model: nvidia/segformer-b1-finetuned-cityscapes-1024-1024 tags: - generated_from_trainer model-index: - name: segformer-b1-finetuned-cityscapes-1024-1024-full-ds results: [] --- # segformer-b1-finetuned-cityscapes-1024-1024-full-ds This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b1-finetuned-cityscapes-1024-1024) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0506 - Mean Iou: 0.9137 - Mean Accuracy: 0.9561 - Overall Accuracy: 0.9831 - Accuracy Default: 1e-06 - Accuracy Pipe: 0.9020 - Accuracy Floor: 0.9742 - Accuracy Background: 0.9920 - Iou Default: 1e-06 - Iou Pipe: 0.7996 - Iou Floor: 0.9590 - Iou Background: 0.9824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Default | Accuracy Pipe | Accuracy Floor | Accuracy Background | Iou Default | Iou Pipe | Iou Floor | Iou Background | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------:|:--------------:|:-------------------:|:-----------:|:--------:|:---------:|:--------------:| | 0.2488 | 1.0 | 39 | 0.1108 | 0.8539 | 0.9260 | 0.9669 | 1e-06 | 0.8345 | 0.9681 | 0.9754 | 1e-06 | 0.6794 | 0.9185 | 0.9639 | | 0.0768 | 2.0 | 78 | 0.0659 | 0.8845 | 0.9254 | 0.9772 | 1e-06 | 0.8239 | 0.9573 | 0.9951 | 1e-06 | 0.7287 | 0.9506 | 0.9741 | | 0.0663 | 3.0 | 117 | 0.0588 | 0.8918 | 0.9320 | 0.9793 | 1e-06 | 0.8343 | 0.9687 | 0.9931 | 1e-06 | 0.7439 | 0.9540 | 0.9776 | | 0.0562 | 4.0 | 156 | 0.0534 | 0.9000 | 0.9592 | 0.9806 | 1e-06 | 0.9237 | 0.9627 | 0.9912 | 1e-06 | 0.7654 | 0.9539 | 0.9808 | | 0.0509 | 5.0 | 195 | 0.0512 | 0.9063 | 0.9492 | 0.9817 | 1e-06 | 0.8876 | 0.9660 | 0.9940 | 1e-06 | 0.7813 | 0.9569 | 0.9806 | | 0.0456 | 6.0 | 234 | 0.0498 | 0.9058 | 0.9550 | 0.9819 | 1e-06 | 0.9037 | 0.9692 | 0.9920 | 1e-06 | 0.7783 | 0.9574 | 0.9817 | | 0.0425 | 7.0 | 273 | 0.0493 | 0.9045 | 0.9515 | 0.9817 | 1e-06 | 0.8918 | 0.9709 | 0.9918 | 1e-06 | 0.7748 | 0.9576 | 0.9810 | | 0.0402 | 8.0 | 312 | 0.0503 | 0.9074 | 0.9456 | 0.9821 | 1e-06 | 0.8722 | 0.9706 | 0.9939 | 1e-06 | 0.7833 | 0.9581 | 0.9810 | | 0.0382 | 9.0 | 351 | 0.0501 | 0.9108 | 0.9471 | 0.9825 | 1e-06 | 0.8766 | 0.9702 | 0.9943 | 1e-06 | 0.7930 | 0.9581 | 0.9812 | | 0.0402 | 10.0 | 390 | 0.0474 | 0.9122 | 0.9520 | 0.9830 | 1e-06 | 0.8907 | 0.9720 | 0.9933 | 1e-06 | 0.7959 | 0.9583 | 0.9824 | | 0.0367 | 11.0 | 429 | 0.0497 | 0.9089 | 0.9571 | 0.9824 | 1e-06 | 0.9088 | 0.9705 | 0.9919 | 1e-06 | 0.7863 | 0.9585 | 0.9820 | | 0.0355 | 12.0 | 468 | 0.0445 | 0.9191 | 0.9618 | 0.9843 | 1e-06 | 0.9202 | 0.9719 | 0.9933 | 1e-06 | 0.8132 | 0.9597 | 0.9844 | | 0.033 | 13.0 | 507 | 0.0494 | 0.9114 | 0.9543 | 0.9828 | 1e-06 | 0.8965 | 0.9746 | 0.9918 | 1e-06 | 0.7943 | 0.9571 | 0.9827 | | 0.0319 | 14.0 | 546 | 0.0471 | 0.9163 | 0.9542 | 0.9837 | 1e-06 | 0.8953 | 0.9740 | 0.9934 | 1e-06 | 0.8068 | 0.9585 | 0.9835 | | 0.0304 | 15.0 | 585 | 0.0476 | 0.9167 | 0.9527 | 0.9839 | 1e-06 | 0.8911 | 0.9726 | 0.9944 | 1e-06 | 0.8070 | 0.9598 | 0.9834 | | 0.0304 | 16.0 | 624 | 0.0492 | 0.9151 | 0.9498 | 0.9835 | 1e-06 | 0.8812 | 0.9744 | 0.9939 | 1e-06 | 0.8036 | 0.9585 | 0.9832 | | 0.0297 | 17.0 | 663 | 0.0504 | 0.9147 | 0.9549 | 0.9834 | 1e-06 | 0.9003 | 0.9705 | 0.9939 | 1e-06 | 0.8023 | 0.9587 | 0.9830 | | 0.03 | 18.0 | 702 | 0.0504 | 0.9123 | 0.9584 | 0.9830 | 1e-06 | 0.9103 | 0.9732 | 0.9917 | 1e-06 | 0.7953 | 0.9588 | 0.9828 | | 0.0294 | 19.0 | 741 | 0.0483 | 0.9162 | 0.9553 | 0.9839 | 1e-06 | 0.8980 | 0.9749 | 0.9931 | 1e-06 | 0.8054 | 0.9596 | 0.9838 | | 0.0295 | 20.0 | 780 | 0.0506 | 0.9137 | 0.9561 | 0.9831 | 1e-06 | 0.9020 | 0.9742 | 0.9920 | 1e-06 | 0.7996 | 0.9590 | 0.9824 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0