--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6232 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2706 | 1.0 | 57 | 2.2603 | 0.25 | | 2.0729 | 2.0 | 114 | 2.0172 | 0.38 | | 1.7159 | 3.0 | 171 | 1.6766 | 0.62 | | 1.5972 | 4.0 | 228 | 1.4569 | 0.65 | | 1.2733 | 5.0 | 285 | 1.2656 | 0.71 | | 1.2068 | 6.0 | 342 | 1.1271 | 0.77 | | 1.1018 | 7.0 | 399 | 1.0385 | 0.77 | | 1.0269 | 8.0 | 456 | 0.9562 | 0.76 | | 0.9285 | 9.0 | 513 | 0.9170 | 0.73 | | 0.8465 | 10.0 | 570 | 0.8357 | 0.8 | | 0.6841 | 11.0 | 627 | 0.8469 | 0.78 | | 0.6767 | 12.0 | 684 | 0.7362 | 0.84 | | 0.6276 | 13.0 | 741 | 0.7254 | 0.83 | | 0.5224 | 14.0 | 798 | 0.7046 | 0.82 | | 0.5469 | 15.0 | 855 | 0.6684 | 0.85 | | 0.5789 | 16.0 | 912 | 0.6343 | 0.85 | | 0.4983 | 17.0 | 969 | 0.6367 | 0.83 | | 0.4746 | 18.0 | 1026 | 0.6301 | 0.83 | | 0.4469 | 19.0 | 1083 | 0.6157 | 0.85 | | 0.4484 | 20.0 | 1140 | 0.6232 | 0.85 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3