---
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B-Instruct
license: llama3
language:
- pt
tags:
- code
- sql
- finetuned
- portugues-BR
co2_eq_emissions:
emissions: 1450
source: "Lacoste, Alexandre, et al. “Quantifying the Carbon Emissions of Machine Learning.” ArXiv (Cornell University), 21 Oct. 2019, https://doi.org/10.48550/arxiv.1910.09700."
training_type: "fine-tuning"
geographical_location: "Council Bluffs, Iowa, USA."
hardware_used: "1 A100 40GB GPU"
---
# Lloro SQL
Lloro SQL, developed by Semantix Research Labs, is a language Model that was trained to effectively transform Portuguese queries into SQL Code. It is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct, that was trained on GretelAI public datasets. The fine-tuning process was performed using the QLORA metodology on a GPU A100 with 40 GB of RAM.
## Model description
Model type: A 7B parameter fine-tuned on GretelAI public datasets.
Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
## What is Lloro's intended use(s)?
Lloro is built for Text2SQL in Portuguese contexts .
Input : Text
Output : Text (Code)
## Usage
Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html))
```python
from openai import OpenAI
client = OpenAI(
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
def generate_responses(instruction, client=client):
chat_response = client.chat.completions.create(
model=,
messages=[
{"role": "system", "content": "Você escreve a instrução SQL que responde às perguntas feitas. Você NÃO FORNECE NENHUM COMENTÁRIO OU EXPLICAÇÃO sobre o que o código faz, apenas a instrução SQL terminando em ponto e vírgula. Você utiliza todos os comandos disponíveis na especificação SQL, como: [SELECT, WHERE, ORDER, LIMIT, CAST, AS, JOIN]."},
{"role": "user", "content": instruction},
]
)
return chat_response.choices[0].message.content
output = generate_responses(user_prompt)
```
## Params
Training Parameters
| Params | Training Data | Examples | Tokens | LR |
|----------------------------------|-------------------------------------------|---------------------------------|------------|--------|
| 8B | GretelAI public datasets + Synthetic Data | 102970 | 18.654.222 | 2e-4 |
## Model Sources
GretelAI:
## Performance
### Test Dataset
| Model | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
|----------------|--------------|-----------------|---------|----------------------|-----------------|-------------|-------------|
| Llama 3 8B | 65.48% | 0.4583 | 0.6361 | 0.8815 | 0.8871 | 0.8835 | 0.8862 |
| Lloro - SQL | 71.33% | 0.6512 | 0.7965 | 0.9458 | 0.9469 | 0.9459 | 0.9466 |
| GPT - 3.5 Turbo| 67.52% | 0.6232 | 0.9967 | 0.9151 | 0.9152 | 0.9142 | 0.9175 |
### Database Benchmark
| Model | Score |
|----------------|--------------|
| Llama 3 - Base | 35.55% |
| Lloro - SQL | 49.48% |
| GPT - 3.5 Turbo| 46.15% |
### Translated BIRD Benchmark - https://bird-bench.github.io/
| Model | Score |
|----------------|--------------|
| Llama 3 - Base | 33.87% |
| Lloro - SQL | 47.14% |
| GPT - 3.5 Turbo| 42.14% |
## Training Infos
The following hyperparameters were used during training:
| Parameter | Value |
|---------------------------|----------------------|
| learning_rate | 2e-4 |
| weight_decay | 0.001 |
| train_batch_size | 16 |
| eval_batch_size | 8 |
| seed | 42 |
| optimizer | Adam - adamw_8bit |
| lr_scheduler_type | cosine |
| num_epochs | 4.0 |
## QLoRA hyperparameters
The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
| Parameter | Value |
|-----------------|---------|
| lora_r | 64 |
| lora_alpha | 128 |
| lora_dropout | 0 |
## Experiments
| Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) |
|-----------------------|--------|-------------|--------------|-----------------|-------------------|
| Llama 3 8B Instruct | 5 | Yes | 4 | 10.16 | 1.45 |
## Framework versions
| Library | Version |
|---------------|-----------|
| accelerate | 0.21.0 |
| bitsandbytes | 0.42.0 |
| Datasets | 2.14.3 |
| peft | 0.4.0 |
| Pytorch | 2.0.1 |
| safetensors | 0.4.1 |
| scikit-image | 0.22.0 |
| scikit-learn | 1.3.2 |
| Tokenizers | 0.14.1 |
| Transformers | 4.37.2 |
| trl | 0.4.7 |