Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- code
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- code
|
7 |
+
- gpt2
|
8 |
+
- generation
|
9 |
+
datasets:
|
10 |
+
- "codeparrot/codeparrot-clean"
|
11 |
+
- "openai_humaneval"
|
12 |
+
metrics:
|
13 |
+
- "evaluate-metric/code_eval"
|
14 |
+
---
|
15 |
+
|
16 |
+
# Compatibilized CodeParrot 🦜 (small)
|
17 |
+
|
18 |
+
This is the compatibilized version of CodeParrot 🦜 is a GPT-2 model (110M parameters) trained to generate Python code.
|
19 |
+
|
20 |
+
The compatibilization is based on the [sequential-rationales](https://github.com/keyonvafa/sequential-rationales) process formulated by Vafa et.al.
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
You can load the CodeParrot model and tokenizer directly in `transformers` and use Galeras dataset for sampling the model:
|
25 |
+
|
26 |
+
```Python
|
27 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("semeru/compatible-codeparrot-small")
|
30 |
+
model = AutoModelWithLMHead.from_pretrained("semeru/compatible-codeparrot-small")
|
31 |
+
|
32 |
+
df_sampled_code['size'] = df_sampled_code['ground_truth'].map(lambda code: len(tokenizer(code)['input_ids']))
|
33 |
+
df_sampled_code['input_ids'] = tokenizer(df_sampled_code['prompt'].tolist())['input_ids']
|
34 |
+
|
35 |
+
```
|
36 |
+
|
37 |
+
or with a `pipeline`:
|
38 |
+
|
39 |
+
```Python
|
40 |
+
from transformers import pipeline
|
41 |
+
|
42 |
+
pipe = pipeline("text-generation", model="codeparrot/codeparrot-small")
|
43 |
+
outputs = pipe("def hello_world():")
|
44 |
+
```
|
45 |
+
|
46 |
+
## Training
|
47 |
+
|
48 |
+
The model was trained on the cleaned [CodeParrot 🦜 dataset](https://huggingface.co/datasets/codeparrot/codeparrot-clean) with the following settings:
|
49 |
+
|
50 |
+
|Config|Value|
|
51 |
+
|-------|-----|
|
52 |
+
|Batch size| 192 |
|
53 |
+
|Context size| 1024 |
|
54 |
+
|Training steps| 150'000|
|
55 |
+
|Gradient accumulation| 1|
|
56 |
+
|Gradient checkpointing| False|
|
57 |
+
|Learning rate| 5e-4 |
|
58 |
+
|Weight decay | 0.1 |
|
59 |
+
|Warmup steps| 2000 |
|
60 |
+
|Schedule| Cosine |
|
61 |
+
|
62 |
+
The training was executed on 16 x A100 (40GB) GPUs. This setting amounts to roughly 29 billion tokens.
|
63 |
+
|
64 |
+
## Performance
|
65 |
+
|
66 |
+
We evaluated the model on OpenAI's [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark which consists of programming challenges:
|
67 |
+
|
68 |
+
| Metric | Value |
|
69 |
+
|-------|-----|
|
70 |
+
|pass@1 | 3.80% |
|
71 |
+
|pass@10 | 6.57% |
|
72 |
+
|pass@100 | 12.78% |
|
73 |
+
|
74 |
+
The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests.
|
75 |
+
|
76 |
+
## Resources
|
77 |
+
|
78 |
+
- Dataset: [full](https://huggingface.co/datasets/codeparrot/codeparrot-clean), [train](https://huggingface.co/datasets/codeparrot/codeparrot-clean-train), [valid](https://huggingface.co/datasets/codeparrot/codeparrot-clean-valid)
|
79 |
+
- Code: [repository](https://github.com/huggingface/transformers/tree/master/examples/research_projects/codeparrot)
|
80 |
+
- Spaces: [generation](), [highlighting]()
|