semihdervis commited on
Commit
8215676
1 Parent(s): e327818

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -80
README.md CHANGED
@@ -1,80 +1,82 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: google/vit-base-patch16-224-in21k
5
- tags:
6
- - image-classification
7
- - generated_from_trainer
8
- datasets:
9
- - imagefolder
10
- metrics:
11
- - accuracy
12
- model-index:
13
- - name: vit-base-cat-emotions
14
- results:
15
- - task:
16
- name: Image Classification
17
- type: image-classification
18
- dataset:
19
- name: custom dataset
20
- type: imagefolder
21
- config: default
22
- split: validation
23
- args: default
24
- metrics:
25
- - name: Accuracy
26
- type: accuracy
27
- value: 0.6352941176470588
28
- ---
29
-
30
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
- should probably proofread and complete it, then remove this comment. -->
32
-
33
- # vit-base-cat-emotions
34
-
35
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the custom dataset dataset.
36
- It achieves the following results on the evaluation set:
37
- - Loss: 1.0160
38
- - Accuracy: 0.6353
39
-
40
- ## Model description
41
-
42
- More information needed
43
-
44
- ## Intended uses & limitations
45
-
46
- More information needed
47
-
48
- ## Training and evaluation data
49
-
50
- More information needed
51
-
52
- ## Training procedure
53
-
54
- ### Training hyperparameters
55
-
56
- The following hyperparameters were used during training:
57
- - learning_rate: 0.0002
58
- - train_batch_size: 16
59
- - eval_batch_size: 8
60
- - seed: 42
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - num_epochs: 10
64
- - mixed_precision_training: Native AMP
65
-
66
- ### Training results
67
-
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 0.3361 | 3.125 | 100 | 1.0125 | 0.6548 |
71
- | 0.0723 | 6.25 | 200 | 0.9043 | 0.7381 |
72
- | 0.0321 | 9.375 | 300 | 0.9268 | 0.7143 |
73
-
74
-
75
- ### Framework versions
76
-
77
- - Transformers 4.44.1
78
- - Pytorch 2.2.2+cu118
79
- - Datasets 2.20.0
80
- - Tokenizers 0.19.1
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224-in21k
5
+ tags:
6
+ - image-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - imagefolder
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: vit-base-cat-emotions
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: custom dataset
20
+ type: imagefolder
21
+ config: default
22
+ split: validation
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.6352941176470588
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # vit-base-cat-emotions
34
+
35
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the custom dataset dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 1.0160
38
+ - Accuracy: 0.6353
39
+
40
+ You can try out the model live [here](https://cat-emotion-classifier.streamlit.app/), and check out the [GitHub repository](https://github.com/semihdervis/cat-emotion-classifier) for more details.
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 0.0002
60
+ - train_batch_size: 16
61
+ - eval_batch_size: 8
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 10
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
72
+ | 0.3361 | 3.125 | 100 | 1.0125 | 0.6548 |
73
+ | 0.0723 | 6.25 | 200 | 0.9043 | 0.7381 |
74
+ | 0.0321 | 9.375 | 300 | 0.9268 | 0.7143 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.44.1
80
+ - Pytorch 2.2.2+cu118
81
+ - Datasets 2.20.0
82
+ - Tokenizers 0.19.1