diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,12018 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.025, + "eval_steps": 500, + "global_step": 1000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 2.5e-05, + "grad_norm": 1860.177978515625, + "learning_rate": 1.0000000000000002e-06, + "loss": 346.4354, + "loss/crossentropy": 2.979090690612793, + "loss/hidden": 0.0, + "loss/logits": 0.38270998001098633, + "loss/reg": 343.0735778808594, + "step": 1 + }, + { + "epoch": 5e-05, + "grad_norm": 19.24078941345215, + "learning_rate": 2.0000000000000003e-06, + "loss": 346.2272, + "loss/crossentropy": 2.8327953815460205, + "loss/hidden": 0.0, + "loss/logits": 0.3208012580871582, + "loss/reg": 343.0735778808594, + "step": 2 + }, + { + "epoch": 7.5e-05, + "grad_norm": 12.568899154663086, + "learning_rate": 3e-06, + "loss": 346.5434, + "loss/crossentropy": 3.0858442783355713, + "loss/hidden": 0.0, + "loss/logits": 0.38866907358169556, + "loss/reg": 343.0688781738281, + "step": 3 + }, + { + "epoch": 0.0001, + "grad_norm": 493.76806640625, + "learning_rate": 4.000000000000001e-06, + "loss": 346.1103, + "loss/crossentropy": 2.736830711364746, + "loss/hidden": 0.0, + "loss/logits": 0.3126556873321533, + "loss/reg": 343.0608215332031, + "step": 4 + }, + { + "epoch": 0.000125, + "grad_norm": 17.433624267578125, + "learning_rate": 5e-06, + "loss": 346.3604, + "loss/crossentropy": 2.9568891525268555, + "loss/hidden": 0.0, + "loss/logits": 0.3535460829734802, + "loss/reg": 343.0499267578125, + "step": 5 + }, + { + "epoch": 0.00015, + "grad_norm": 43.95212936401367, + "learning_rate": 6e-06, + "loss": 346.2806, + "loss/crossentropy": 2.8500430583953857, + "loss/hidden": 0.0, + "loss/logits": 0.3941458761692047, + "loss/reg": 343.03643798828125, + "step": 6 + }, + { + "epoch": 0.000175, + "grad_norm": 14.617745399475098, + "learning_rate": 7.000000000000001e-06, + "loss": 346.1611, + "loss/crossentropy": 2.815033435821533, + "loss/hidden": 0.0, + "loss/logits": 0.3255086839199066, + "loss/reg": 343.0205993652344, + "step": 7 + }, + { + "epoch": 0.0002, + "grad_norm": 94.23649597167969, + "learning_rate": 8.000000000000001e-06, + "loss": 346.2723, + "loss/crossentropy": 2.938474178314209, + "loss/hidden": 0.0, + "loss/logits": 0.33254432678222656, + "loss/reg": 343.00128173828125, + "step": 8 + }, + { + "epoch": 0.000225, + "grad_norm": 13.357231140136719, + "learning_rate": 9e-06, + "loss": 345.8072, + "loss/crossentropy": 2.565714120864868, + "loss/hidden": 0.0, + "loss/logits": 0.26191234588623047, + "loss/reg": 342.9796142578125, + "step": 9 + }, + { + "epoch": 0.00025, + "grad_norm": 7.0878190994262695, + "learning_rate": 1e-05, + "loss": 346.0762, + "loss/crossentropy": 2.8687756061553955, + "loss/hidden": 0.0, + "loss/logits": 0.25318092107772827, + "loss/reg": 342.9542236328125, + "step": 10 + }, + { + "epoch": 0.000275, + "grad_norm": 33.097476959228516, + "learning_rate": 1.1000000000000001e-05, + "loss": 345.8165, + "loss/crossentropy": 2.6577072143554688, + "loss/hidden": 0.0, + "loss/logits": 0.23302724957466125, + "loss/reg": 342.92578125, + "step": 11 + }, + { + "epoch": 0.0003, + "grad_norm": 17.795812606811523, + "learning_rate": 1.2e-05, + "loss": 346.2238, + "loss/crossentropy": 3.0676422119140625, + "loss/hidden": 0.0, + "loss/logits": 0.2625121474266052, + "loss/reg": 342.8936462402344, + "step": 12 + }, + { + "epoch": 0.000325, + "grad_norm": 5.172369003295898, + "learning_rate": 1.3000000000000001e-05, + "loss": 345.8532, + "loss/crossentropy": 2.8076300621032715, + "loss/hidden": 0.0, + "loss/logits": 0.18656937777996063, + "loss/reg": 342.8590087890625, + "step": 13 + }, + { + "epoch": 0.00035, + "grad_norm": 5.153316497802734, + "learning_rate": 1.4000000000000001e-05, + "loss": 345.4301, + "loss/crossentropy": 2.4606783390045166, + "loss/hidden": 0.0, + "loss/logits": 0.15036556124687195, + "loss/reg": 342.8190612792969, + "step": 14 + }, + { + "epoch": 0.000375, + "grad_norm": 5.007053852081299, + "learning_rate": 1.5e-05, + "loss": 345.9839, + "loss/crossentropy": 3.0140442848205566, + "loss/hidden": 0.0, + "loss/logits": 0.19039079546928406, + "loss/reg": 342.7794189453125, + "step": 15 + }, + { + "epoch": 0.0004, + "grad_norm": 9.89411449432373, + "grad_norm_var": 218532.61416541884, + "learning_rate": 1.6000000000000003e-05, + "loss": 345.7775, + "loss/crossentropy": 2.900439977645874, + "loss/hidden": 0.0, + "loss/logits": 0.14180609583854675, + "loss/reg": 342.7352600097656, + "step": 16 + }, + { + "epoch": 0.000425, + "grad_norm": 4.438236713409424, + "grad_norm_var": 14521.267629174466, + "learning_rate": 1.7000000000000003e-05, + "loss": 345.5058, + "loss/crossentropy": 2.6860878467559814, + "loss/hidden": 0.0, + "loss/logits": 0.13272428512573242, + "loss/reg": 342.68695068359375, + "step": 17 + }, + { + "epoch": 0.00045, + "grad_norm": 6.959152698516846, + "grad_norm_var": 14580.739492472594, + "learning_rate": 1.8e-05, + "loss": 345.8498, + "loss/crossentropy": 3.0659737586975098, + "loss/hidden": 0.0, + "loss/logits": 0.14944659173488617, + "loss/reg": 342.6343688964844, + "step": 18 + }, + { + "epoch": 0.000475, + "grad_norm": 4.815605640411377, + "grad_norm_var": 14622.192919380279, + "learning_rate": 1.9e-05, + "loss": 345.6652, + "loss/crossentropy": 2.9661877155303955, + "loss/hidden": 0.0, + "loss/logits": 0.11781711876392365, + "loss/reg": 342.5811462402344, + "step": 19 + }, + { + "epoch": 0.0005, + "grad_norm": 20.490373611450195, + "grad_norm_var": 526.7206949274603, + "learning_rate": 2e-05, + "loss": 345.5417, + "loss/crossentropy": 2.880610942840576, + "loss/hidden": 0.0, + "loss/logits": 0.1311033070087433, + "loss/reg": 342.530029296875, + "step": 20 + }, + { + "epoch": 0.000525, + "grad_norm": 8.06376838684082, + "grad_norm_var": 534.1263548023838, + "learning_rate": 2.1e-05, + "loss": 345.2038, + "loss/crossentropy": 2.6139538288116455, + "loss/hidden": 0.0, + "loss/logits": 0.1176835298538208, + "loss/reg": 342.4721984863281, + "step": 21 + }, + { + "epoch": 0.00055, + "grad_norm": 2.9717931747436523, + "grad_norm_var": 499.3808875231212, + "learning_rate": 2.2000000000000003e-05, + "loss": 345.0013, + "loss/crossentropy": 2.48826265335083, + "loss/hidden": 0.0, + "loss/logits": 0.09986373782157898, + "loss/reg": 342.4132080078125, + "step": 22 + }, + { + "epoch": 0.000575, + "grad_norm": 3.0796430110931396, + "grad_norm_var": 509.5546291852752, + "learning_rate": 2.3000000000000003e-05, + "loss": 345.5402, + "loss/crossentropy": 3.083524227142334, + "loss/hidden": 0.0, + "loss/logits": 0.11023637652397156, + "loss/reg": 342.3464050292969, + "step": 23 + }, + { + "epoch": 0.0006, + "grad_norm": 4.465290069580078, + "grad_norm_var": 66.02530253493347, + "learning_rate": 2.4e-05, + "loss": 345.118, + "loss/crossentropy": 2.7357635498046875, + "loss/hidden": 0.0, + "loss/logits": 0.10327694565057755, + "loss/reg": 342.2790222167969, + "step": 24 + }, + { + "epoch": 0.000625, + "grad_norm": 2.7485175132751465, + "grad_norm_var": 67.58997383241844, + "learning_rate": 2.5e-05, + "loss": 345.032, + "loss/crossentropy": 2.7314038276672363, + "loss/hidden": 0.0, + "loss/logits": 0.09067989885807037, + "loss/reg": 342.2099609375, + "step": 25 + }, + { + "epoch": 0.00065, + "grad_norm": 6.201633930206299, + "grad_norm_var": 67.84461638262088, + "learning_rate": 2.6000000000000002e-05, + "loss": 345.2013, + "loss/crossentropy": 2.9543004035949707, + "loss/hidden": 0.0, + "loss/logits": 0.10873008519411087, + "loss/reg": 342.1382141113281, + "step": 26 + }, + { + "epoch": 0.000675, + "grad_norm": 2.800253391265869, + "grad_norm_var": 26.949349170164666, + "learning_rate": 2.7000000000000002e-05, + "loss": 345.0995, + "loss/crossentropy": 2.9452881813049316, + "loss/hidden": 0.0, + "loss/logits": 0.09716818481683731, + "loss/reg": 342.0570983886719, + "step": 27 + }, + { + "epoch": 0.0007, + "grad_norm": 2.699833631515503, + "grad_norm_var": 19.218166857921933, + "learning_rate": 2.8000000000000003e-05, + "loss": 344.7669, + "loss/crossentropy": 2.708958864212036, + "loss/hidden": 0.0, + "loss/logits": 0.08778566122055054, + "loss/reg": 341.9701843261719, + "step": 28 + }, + { + "epoch": 0.000725, + "grad_norm": 2.547497272491455, + "grad_norm_var": 19.91571754218688, + "learning_rate": 2.9e-05, + "loss": 344.7711, + "loss/crossentropy": 2.8091719150543213, + "loss/hidden": 0.0, + "loss/logits": 0.08377528190612793, + "loss/reg": 341.8781433105469, + "step": 29 + }, + { + "epoch": 0.00075, + "grad_norm": 2.952777862548828, + "grad_norm_var": 20.399598744815588, + "learning_rate": 3e-05, + "loss": 344.7112, + "loss/crossentropy": 2.8418242931365967, + "loss/hidden": 0.0, + "loss/logits": 0.08888664841651917, + "loss/reg": 341.7804260253906, + "step": 30 + }, + { + "epoch": 0.000775, + "grad_norm": 2.7115345001220703, + "grad_norm_var": 20.92066401501108, + "learning_rate": 3.1e-05, + "loss": 344.3383, + "loss/crossentropy": 2.567899703979492, + "loss/hidden": 0.0, + "loss/logits": 0.08625812828540802, + "loss/reg": 341.68408203125, + "step": 31 + }, + { + "epoch": 0.0008, + "grad_norm": 2.8718879222869873, + "grad_norm_var": 19.879086013782704, + "learning_rate": 3.2000000000000005e-05, + "loss": 344.435, + "loss/crossentropy": 2.772453546524048, + "loss/hidden": 0.0, + "loss/logits": 0.08201509714126587, + "loss/reg": 341.58056640625, + "step": 32 + }, + { + "epoch": 0.000825, + "grad_norm": 3.096867084503174, + "grad_norm_var": 20.10115293189847, + "learning_rate": 3.3e-05, + "loss": 344.5786, + "loss/crossentropy": 3.0346808433532715, + "loss/hidden": 0.0, + "loss/logits": 0.07674358785152435, + "loss/reg": 341.4671936035156, + "step": 33 + }, + { + "epoch": 0.00085, + "grad_norm": 2.8663108348846436, + "grad_norm_var": 20.061121544886294, + "learning_rate": 3.4000000000000007e-05, + "loss": 344.4023, + "loss/crossentropy": 2.9602417945861816, + "loss/hidden": 0.0, + "loss/logits": 0.09072191268205643, + "loss/reg": 341.3513488769531, + "step": 34 + }, + { + "epoch": 0.000875, + "grad_norm": 2.5331344604492188, + "grad_norm_var": 20.355035956744192, + "learning_rate": 3.5e-05, + "loss": 343.8108, + "loss/crossentropy": 2.4948618412017822, + "loss/hidden": 0.0, + "loss/logits": 0.07910144329071045, + "loss/reg": 341.2367858886719, + "step": 35 + }, + { + "epoch": 0.0009, + "grad_norm": 3.133824110031128, + "grad_norm_var": 2.3373841825731096, + "learning_rate": 3.6e-05, + "loss": 344.111, + "loss/crossentropy": 2.913165807723999, + "loss/hidden": 0.0, + "loss/logits": 0.08120056986808777, + "loss/reg": 341.11663818359375, + "step": 36 + }, + { + "epoch": 0.000925, + "grad_norm": 2.7178568840026855, + "grad_norm_var": 0.8591776946022585, + "learning_rate": 3.7e-05, + "loss": 343.527, + "loss/crossentropy": 2.4706835746765137, + "loss/hidden": 0.0, + "loss/logits": 0.06964104622602463, + "loss/reg": 340.9867248535156, + "step": 37 + }, + { + "epoch": 0.00095, + "grad_norm": 2.5725350379943848, + "grad_norm_var": 0.8786228996593496, + "learning_rate": 3.8e-05, + "loss": 343.4507, + "loss/crossentropy": 2.5263352394104004, + "loss/hidden": 0.0, + "loss/logits": 0.07618534564971924, + "loss/reg": 340.84814453125, + "step": 38 + }, + { + "epoch": 0.000975, + "grad_norm": 2.9023842811584473, + "grad_norm_var": 0.8816577904134154, + "learning_rate": 3.9000000000000006e-05, + "loss": 343.5782, + "loss/crossentropy": 2.794910192489624, + "loss/hidden": 0.0, + "loss/logits": 0.07984155416488647, + "loss/reg": 340.7034606933594, + "step": 39 + }, + { + "epoch": 0.001, + "grad_norm": 2.4993066787719727, + "grad_norm_var": 0.7689802883673867, + "learning_rate": 4e-05, + "loss": 343.2404, + "loss/crossentropy": 2.6109530925750732, + "loss/hidden": 0.0, + "loss/logits": 0.06857939064502716, + "loss/reg": 340.5608215332031, + "step": 40 + }, + { + "epoch": 0.001025, + "grad_norm": 2.9259226322174072, + "grad_norm_var": 0.7652114100620696, + "learning_rate": 4.1e-05, + "loss": 343.4892, + "loss/crossentropy": 2.9959700107574463, + "loss/hidden": 0.0, + "loss/logits": 0.0883413702249527, + "loss/reg": 340.40484619140625, + "step": 41 + }, + { + "epoch": 0.00105, + "grad_norm": 2.8494505882263184, + "grad_norm_var": 0.03747455037091238, + "learning_rate": 4.2e-05, + "loss": 342.9757, + "loss/crossentropy": 2.6481616497039795, + "loss/hidden": 0.0, + "loss/logits": 0.07580338418483734, + "loss/reg": 340.2517395019531, + "step": 42 + }, + { + "epoch": 0.001075, + "grad_norm": 2.8318848609924316, + "grad_norm_var": 0.03756942187646525, + "learning_rate": 4.3e-05, + "loss": 343.0756, + "loss/crossentropy": 2.914668083190918, + "loss/hidden": 0.0, + "loss/logits": 0.07487093657255173, + "loss/reg": 340.0860290527344, + "step": 43 + }, + { + "epoch": 0.0011, + "grad_norm": 2.5573673248291016, + "grad_norm_var": 0.04063739560772698, + "learning_rate": 4.4000000000000006e-05, + "loss": 342.7438, + "loss/crossentropy": 2.758633613586426, + "loss/hidden": 0.0, + "loss/logits": 0.07187295705080032, + "loss/reg": 339.913330078125, + "step": 44 + }, + { + "epoch": 0.001125, + "grad_norm": 2.6494765281677246, + "grad_norm_var": 0.038049041798770604, + "learning_rate": 4.5e-05, + "loss": 342.6349, + "loss/crossentropy": 2.820467710494995, + "loss/hidden": 0.0, + "loss/logits": 0.07692387700080872, + "loss/reg": 339.7375183105469, + "step": 45 + }, + { + "epoch": 0.00115, + "grad_norm": 2.503408432006836, + "grad_norm_var": 0.04103864613901654, + "learning_rate": 4.600000000000001e-05, + "loss": 342.367, + "loss/crossentropy": 2.7334773540496826, + "loss/hidden": 0.0, + "loss/logits": 0.0775354877114296, + "loss/reg": 339.5559387207031, + "step": 46 + }, + { + "epoch": 0.001175, + "grad_norm": 2.55014967918396, + "grad_norm_var": 0.04379427355291886, + "learning_rate": 4.7e-05, + "loss": 342.1882, + "loss/crossentropy": 2.7380266189575195, + "loss/hidden": 0.0, + "loss/logits": 0.07468418776988983, + "loss/reg": 339.37548828125, + "step": 47 + }, + { + "epoch": 0.0012, + "grad_norm": 2.682318687438965, + "grad_norm_var": 0.04305705435034118, + "learning_rate": 4.8e-05, + "loss": 341.9997, + "loss/crossentropy": 2.7375612258911133, + "loss/hidden": 0.0, + "loss/logits": 0.06463472545146942, + "loss/reg": 339.1974792480469, + "step": 48 + }, + { + "epoch": 0.001225, + "grad_norm": 2.775233268737793, + "grad_norm_var": 0.03430480419531913, + "learning_rate": 4.9e-05, + "loss": 342.0445, + "loss/crossentropy": 2.9467415809631348, + "loss/hidden": 0.0, + "loss/logits": 0.07443998754024506, + "loss/reg": 339.0233459472656, + "step": 49 + }, + { + "epoch": 0.00125, + "grad_norm": 2.5482699871063232, + "grad_norm_var": 0.034503307506799766, + "learning_rate": 5e-05, + "loss": 341.5835, + "loss/crossentropy": 2.6657731533050537, + "loss/hidden": 0.0, + "loss/logits": 0.07320375740528107, + "loss/reg": 338.8445129394531, + "step": 50 + }, + { + "epoch": 0.001275, + "grad_norm": 2.7958645820617676, + "grad_norm_var": 0.032900881109643856, + "learning_rate": 5.1000000000000006e-05, + "loss": 341.7335, + "loss/crossentropy": 3.0148534774780273, + "loss/hidden": 0.0, + "loss/logits": 0.08110088109970093, + "loss/reg": 338.6375427246094, + "step": 51 + }, + { + "epoch": 0.0013, + "grad_norm": 2.803079605102539, + "grad_norm_var": 0.02142033029363475, + "learning_rate": 5.2000000000000004e-05, + "loss": 341.2834, + "loss/crossentropy": 2.762022018432617, + "loss/hidden": 0.0, + "loss/logits": 0.07052050530910492, + "loss/reg": 338.4508056640625, + "step": 52 + }, + { + "epoch": 0.001325, + "grad_norm": 3.264613389968872, + "grad_norm_var": 0.041567737457307886, + "learning_rate": 5.300000000000001e-05, + "loss": 341.1463, + "loss/crossentropy": 2.8193376064300537, + "loss/hidden": 0.0, + "loss/logits": 0.09100329875946045, + "loss/reg": 338.2359924316406, + "step": 53 + }, + { + "epoch": 0.00135, + "grad_norm": 2.7328436374664307, + "grad_norm_var": 0.039766415905754825, + "learning_rate": 5.4000000000000005e-05, + "loss": 340.6042, + "loss/crossentropy": 2.502927780151367, + "loss/hidden": 0.0, + "loss/logits": 0.07811737805604935, + "loss/reg": 338.0231628417969, + "step": 54 + }, + { + "epoch": 0.001375, + "grad_norm": 3.4147236347198486, + "grad_norm_var": 0.06713011702883306, + "learning_rate": 5.500000000000001e-05, + "loss": 340.9179, + "loss/crossentropy": 3.0260379314422607, + "loss/hidden": 0.0, + "loss/logits": 0.09565207362174988, + "loss/reg": 337.7962341308594, + "step": 55 + }, + { + "epoch": 0.0014, + "grad_norm": 2.4889872074127197, + "grad_norm_var": 0.0675147239578789, + "learning_rate": 5.6000000000000006e-05, + "loss": 340.2508, + "loss/crossentropy": 2.5990207195281982, + "loss/hidden": 0.0, + "loss/logits": 0.07676048576831818, + "loss/reg": 337.57501220703125, + "step": 56 + }, + { + "epoch": 0.001425, + "grad_norm": 2.6865806579589844, + "grad_norm_var": 0.06622606037023218, + "learning_rate": 5.6999999999999996e-05, + "loss": 340.0853, + "loss/crossentropy": 2.6511263847351074, + "loss/hidden": 0.0, + "loss/logits": 0.07812380790710449, + "loss/reg": 337.35601806640625, + "step": 57 + }, + { + "epoch": 0.00145, + "grad_norm": 2.625458002090454, + "grad_norm_var": 0.06664228909772092, + "learning_rate": 5.8e-05, + "loss": 339.9197, + "loss/crossentropy": 2.7347943782806396, + "loss/hidden": 0.0, + "loss/logits": 0.08070610463619232, + "loss/reg": 337.10418701171875, + "step": 58 + }, + { + "epoch": 0.001475, + "grad_norm": 3.2201623916625977, + "grad_norm_var": 0.08059432957815199, + "learning_rate": 5.9e-05, + "loss": 339.55, + "loss/crossentropy": 2.606354236602783, + "loss/hidden": 0.0, + "loss/logits": 0.08992001414299011, + "loss/reg": 336.853759765625, + "step": 59 + }, + { + "epoch": 0.0015, + "grad_norm": 2.9708340167999268, + "grad_norm_var": 0.07963074673126963, + "learning_rate": 6e-05, + "loss": 339.8324, + "loss/crossentropy": 3.144277572631836, + "loss/hidden": 0.0, + "loss/logits": 0.09014974534511566, + "loss/reg": 336.59796142578125, + "step": 60 + }, + { + "epoch": 0.001525, + "grad_norm": 3.067251443862915, + "grad_norm_var": 0.08246093717145656, + "learning_rate": 6.1e-05, + "loss": 339.0275, + "loss/crossentropy": 2.5903847217559814, + "loss/hidden": 0.0, + "loss/logits": 0.10276832431554794, + "loss/reg": 336.3343200683594, + "step": 61 + }, + { + "epoch": 0.00155, + "grad_norm": 3.0696287155151367, + "grad_norm_var": 0.07855122581927745, + "learning_rate": 6.2e-05, + "loss": 339.1453, + "loss/crossentropy": 2.9826090335845947, + "loss/hidden": 0.0, + "loss/logits": 0.09507931768894196, + "loss/reg": 336.0675964355469, + "step": 62 + }, + { + "epoch": 0.001575, + "grad_norm": 4.388347148895264, + "grad_norm_var": 0.2147750922195494, + "learning_rate": 6.3e-05, + "loss": 338.7891, + "loss/crossentropy": 2.883762836456299, + "loss/hidden": 0.0, + "loss/logits": 0.12124631553888321, + "loss/reg": 335.7840576171875, + "step": 63 + }, + { + "epoch": 0.0016, + "grad_norm": 2.8880841732025146, + "grad_norm_var": 0.20950431287563612, + "learning_rate": 6.400000000000001e-05, + "loss": 338.2764, + "loss/crossentropy": 2.6835389137268066, + "loss/hidden": 0.0, + "loss/logits": 0.09364684671163559, + "loss/reg": 335.49920654296875, + "step": 64 + }, + { + "epoch": 0.001625, + "grad_norm": 2.813340425491333, + "grad_norm_var": 0.2085356207302605, + "learning_rate": 6.500000000000001e-05, + "loss": 338.2492, + "loss/crossentropy": 2.953268527984619, + "loss/hidden": 0.0, + "loss/logits": 0.09223559498786926, + "loss/reg": 335.2037353515625, + "step": 65 + }, + { + "epoch": 0.00165, + "grad_norm": 2.741157054901123, + "grad_norm_var": 0.19959997265595816, + "learning_rate": 6.6e-05, + "loss": 337.3503, + "loss/crossentropy": 2.3697705268859863, + "loss/hidden": 0.0, + "loss/logits": 0.07957518845796585, + "loss/reg": 334.90087890625, + "step": 66 + }, + { + "epoch": 0.001675, + "grad_norm": 3.6085925102233887, + "grad_norm_var": 0.21895872310333644, + "learning_rate": 6.7e-05, + "loss": 337.5594, + "loss/crossentropy": 2.8747456073760986, + "loss/hidden": 0.0, + "loss/logits": 0.09977666288614273, + "loss/reg": 334.5848388671875, + "step": 67 + }, + { + "epoch": 0.0017, + "grad_norm": 3.3652493953704834, + "grad_norm_var": 0.22027918073739935, + "learning_rate": 6.800000000000001e-05, + "loss": 337.4217, + "loss/crossentropy": 3.0556256771087646, + "loss/hidden": 0.0, + "loss/logits": 0.10333959013223648, + "loss/reg": 334.2626953125, + "step": 68 + }, + { + "epoch": 0.001725, + "grad_norm": 3.1251964569091797, + "grad_norm_var": 0.2181387434263814, + "learning_rate": 6.9e-05, + "loss": 336.7281, + "loss/crossentropy": 2.6668808460235596, + "loss/hidden": 0.0, + "loss/logits": 0.1156100332736969, + "loss/reg": 333.9456481933594, + "step": 69 + }, + { + "epoch": 0.00175, + "grad_norm": 2.704983711242676, + "grad_norm_var": 0.219459742286683, + "learning_rate": 7e-05, + "loss": 336.4565, + "loss/crossentropy": 2.7357680797576904, + "loss/hidden": 0.0, + "loss/logits": 0.09776544570922852, + "loss/reg": 333.6229553222656, + "step": 70 + }, + { + "epoch": 0.001775, + "grad_norm": 2.7894554138183594, + "grad_norm_var": 0.21546068539459284, + "learning_rate": 7.1e-05, + "loss": 336.4183, + "loss/crossentropy": 3.014235258102417, + "loss/hidden": 0.0, + "loss/logits": 0.10774749517440796, + "loss/reg": 333.2962951660156, + "step": 71 + }, + { + "epoch": 0.0018, + "grad_norm": 2.5992395877838135, + "grad_norm_var": 0.2081999960008865, + "learning_rate": 7.2e-05, + "loss": 335.7705, + "loss/crossentropy": 2.7298364639282227, + "loss/hidden": 0.0, + "loss/logits": 0.08281661570072174, + "loss/reg": 332.9578552246094, + "step": 72 + }, + { + "epoch": 0.001825, + "grad_norm": 2.682684898376465, + "grad_norm_var": 0.20838528770162246, + "learning_rate": 7.3e-05, + "loss": 335.5829, + "loss/crossentropy": 2.8684210777282715, + "loss/hidden": 0.0, + "loss/logits": 0.0963786244392395, + "loss/reg": 332.6180725097656, + "step": 73 + }, + { + "epoch": 0.00185, + "grad_norm": 2.8167314529418945, + "grad_norm_var": 0.20006842089726434, + "learning_rate": 7.4e-05, + "loss": 335.2414, + "loss/crossentropy": 2.8619723320007324, + "loss/hidden": 0.0, + "loss/logits": 0.09637870639562607, + "loss/reg": 332.2830810546875, + "step": 74 + }, + { + "epoch": 0.001875, + "grad_norm": 2.792503595352173, + "grad_norm_var": 0.20197785150176603, + "learning_rate": 7.500000000000001e-05, + "loss": 334.7866, + "loss/crossentropy": 2.752199411392212, + "loss/hidden": 0.0, + "loss/logits": 0.10928215831518173, + "loss/reg": 331.9251403808594, + "step": 75 + }, + { + "epoch": 0.0019, + "grad_norm": 3.629366636276245, + "grad_norm_var": 0.22419816294486522, + "learning_rate": 7.6e-05, + "loss": 334.6898, + "loss/crossentropy": 3.008653402328491, + "loss/hidden": 0.0, + "loss/logits": 0.11774040013551712, + "loss/reg": 331.5634460449219, + "step": 76 + }, + { + "epoch": 0.001925, + "grad_norm": 2.7170186042785645, + "grad_norm_var": 0.2318815003938539, + "learning_rate": 7.7e-05, + "loss": 334.0274, + "loss/crossentropy": 2.7513821125030518, + "loss/hidden": 0.0, + "loss/logits": 0.0983215868473053, + "loss/reg": 331.177734375, + "step": 77 + }, + { + "epoch": 0.00195, + "grad_norm": 3.206778049468994, + "grad_norm_var": 0.2334942618955277, + "learning_rate": 7.800000000000001e-05, + "loss": 334.0803, + "loss/crossentropy": 3.193337917327881, + "loss/hidden": 0.0, + "loss/logits": 0.10869012027978897, + "loss/reg": 330.7782897949219, + "step": 78 + }, + { + "epoch": 0.001975, + "grad_norm": 2.8564422130584717, + "grad_norm_var": 0.10767969782056426, + "learning_rate": 7.900000000000001e-05, + "loss": 333.2658, + "loss/crossentropy": 2.764251947402954, + "loss/hidden": 0.0, + "loss/logits": 0.09988151490688324, + "loss/reg": 330.4017028808594, + "step": 79 + }, + { + "epoch": 0.002, + "grad_norm": 2.5950961112976074, + "grad_norm_var": 0.11579763493383836, + "learning_rate": 8e-05, + "loss": 332.7263, + "loss/crossentropy": 2.626741409301758, + "loss/hidden": 0.0, + "loss/logits": 0.088912233710289, + "loss/reg": 330.01068115234375, + "step": 80 + }, + { + "epoch": 0.002025, + "grad_norm": 2.9864420890808105, + "grad_norm_var": 0.11474153182901219, + "learning_rate": 8.1e-05, + "loss": 332.4809, + "loss/crossentropy": 2.768440008163452, + "loss/hidden": 0.0, + "loss/logits": 0.11446887254714966, + "loss/reg": 329.5980224609375, + "step": 81 + }, + { + "epoch": 0.00205, + "grad_norm": 2.9913902282714844, + "grad_norm_var": 0.11165182755541589, + "learning_rate": 8.2e-05, + "loss": 332.2192, + "loss/crossentropy": 2.921024799346924, + "loss/hidden": 0.0, + "loss/logits": 0.10505437850952148, + "loss/reg": 329.193115234375, + "step": 82 + }, + { + "epoch": 0.002075, + "grad_norm": 3.1324057579040527, + "grad_norm_var": 0.08506906493201592, + "learning_rate": 8.3e-05, + "loss": 331.8305, + "loss/crossentropy": 2.9233036041259766, + "loss/hidden": 0.0, + "loss/logits": 0.11960877478122711, + "loss/reg": 328.78759765625, + "step": 83 + }, + { + "epoch": 0.0021, + "grad_norm": 4.698559761047363, + "grad_norm_var": 0.27231954898200667, + "learning_rate": 8.4e-05, + "loss": 331.6368, + "loss/crossentropy": 3.0924150943756104, + "loss/hidden": 0.0, + "loss/logits": 0.17615610361099243, + "loss/reg": 328.3682861328125, + "step": 84 + }, + { + "epoch": 0.002125, + "grad_norm": 3.177739143371582, + "grad_norm_var": 0.27322718837700205, + "learning_rate": 8.5e-05, + "loss": 330.8532, + "loss/crossentropy": 2.7933664321899414, + "loss/hidden": 0.0, + "loss/logits": 0.11796407401561737, + "loss/reg": 327.9419250488281, + "step": 85 + }, + { + "epoch": 0.00215, + "grad_norm": 3.030458688735962, + "grad_norm_var": 0.26602324580689635, + "learning_rate": 8.6e-05, + "loss": 330.4252, + "loss/crossentropy": 2.8065192699432373, + "loss/hidden": 0.0, + "loss/logits": 0.11260520666837692, + "loss/reg": 327.506103515625, + "step": 86 + }, + { + "epoch": 0.002175, + "grad_norm": 2.590994119644165, + "grad_norm_var": 0.2752177678969853, + "learning_rate": 8.7e-05, + "loss": 329.8946, + "loss/crossentropy": 2.706664562225342, + "loss/hidden": 0.0, + "loss/logits": 0.11704559624195099, + "loss/reg": 327.0708923339844, + "step": 87 + }, + { + "epoch": 0.0022, + "grad_norm": 2.971489429473877, + "grad_norm_var": 0.2624243358406903, + "learning_rate": 8.800000000000001e-05, + "loss": 329.6451, + "loss/crossentropy": 2.8904268741607666, + "loss/hidden": 0.0, + "loss/logits": 0.11559218168258667, + "loss/reg": 326.6390380859375, + "step": 88 + }, + { + "epoch": 0.002225, + "grad_norm": 2.968080759048462, + "grad_norm_var": 0.25335665900247384, + "learning_rate": 8.900000000000001e-05, + "loss": 329.3453, + "loss/crossentropy": 3.0395331382751465, + "loss/hidden": 0.0, + "loss/logits": 0.12317082285881042, + "loss/reg": 326.1826477050781, + "step": 89 + }, + { + "epoch": 0.00225, + "grad_norm": 2.7764782905578613, + "grad_norm_var": 0.2548311632382782, + "learning_rate": 9e-05, + "loss": 328.5304, + "loss/crossentropy": 2.6738674640655518, + "loss/hidden": 0.0, + "loss/logits": 0.1210193932056427, + "loss/reg": 325.73553466796875, + "step": 90 + }, + { + "epoch": 0.002275, + "grad_norm": 2.9657976627349854, + "grad_norm_var": 0.25029449720438685, + "learning_rate": 9.1e-05, + "loss": 327.8257, + "loss/crossentropy": 2.4202983379364014, + "loss/hidden": 0.0, + "loss/logits": 0.13400676846504211, + "loss/reg": 325.27142333984375, + "step": 91 + }, + { + "epoch": 0.0023, + "grad_norm": 2.650662422180176, + "grad_norm_var": 0.23859044240333346, + "learning_rate": 9.200000000000001e-05, + "loss": 327.4639, + "loss/crossentropy": 2.5483720302581787, + "loss/hidden": 0.0, + "loss/logits": 0.11590175330638885, + "loss/reg": 324.7995910644531, + "step": 92 + }, + { + "epoch": 0.002325, + "grad_norm": 3.443924903869629, + "grad_norm_var": 0.24227501888755848, + "learning_rate": 9.300000000000001e-05, + "loss": 327.2633, + "loss/crossentropy": 2.815500497817993, + "loss/hidden": 0.0, + "loss/logits": 0.1212223544716835, + "loss/reg": 324.32659912109375, + "step": 93 + }, + { + "epoch": 0.00235, + "grad_norm": 3.134320020675659, + "grad_norm_var": 0.24123508076126352, + "learning_rate": 9.4e-05, + "loss": 326.7527, + "loss/crossentropy": 2.785496473312378, + "loss/hidden": 0.0, + "loss/logits": 0.13180789351463318, + "loss/reg": 323.8353576660156, + "step": 94 + }, + { + "epoch": 0.002375, + "grad_norm": 2.610710382461548, + "grad_norm_var": 0.2516995603676444, + "learning_rate": 9.5e-05, + "loss": 326.0419, + "loss/crossentropy": 2.5883114337921143, + "loss/hidden": 0.0, + "loss/logits": 0.11013612151145935, + "loss/reg": 323.34344482421875, + "step": 95 + }, + { + "epoch": 0.0024, + "grad_norm": 3.3038907051086426, + "grad_norm_var": 0.24055345506962927, + "learning_rate": 9.6e-05, + "loss": 326.3564, + "loss/crossentropy": 3.360260009765625, + "loss/hidden": 0.0, + "loss/logits": 0.12902778387069702, + "loss/reg": 322.8670959472656, + "step": 96 + }, + { + "epoch": 0.002425, + "grad_norm": 3.0808234214782715, + "grad_norm_var": 0.23981223839680202, + "learning_rate": 9.7e-05, + "loss": 325.4279, + "loss/crossentropy": 2.9151549339294434, + "loss/hidden": 0.0, + "loss/logits": 0.1561610996723175, + "loss/reg": 322.3565979003906, + "step": 97 + }, + { + "epoch": 0.00245, + "grad_norm": 3.7542147636413574, + "grad_norm_var": 0.2655938131607021, + "learning_rate": 9.8e-05, + "loss": 324.8318, + "loss/crossentropy": 2.83591628074646, + "loss/hidden": 0.0, + "loss/logits": 0.13835349678993225, + "loss/reg": 321.8575134277344, + "step": 98 + }, + { + "epoch": 0.002475, + "grad_norm": 4.176578044891357, + "grad_norm_var": 0.3322401459220373, + "learning_rate": 9.900000000000001e-05, + "loss": 324.9787, + "loss/crossentropy": 3.4443886280059814, + "loss/hidden": 0.0, + "loss/logits": 0.20227839052677155, + "loss/reg": 321.3320007324219, + "step": 99 + }, + { + "epoch": 0.0025, + "grad_norm": 3.2133636474609375, + "grad_norm_var": 0.17501650801164412, + "learning_rate": 0.0001, + "loss": 323.56, + "loss/crossentropy": 2.631444215774536, + "loss/hidden": 0.0, + "loss/logits": 0.13826847076416016, + "loss/reg": 320.7903137207031, + "step": 100 + }, + { + "epoch": 0.002525, + "grad_norm": 3.3536131381988525, + "grad_norm_var": 0.17840699933572804, + "learning_rate": 0.0001, + "loss": 323.2537, + "loss/crossentropy": 2.823065757751465, + "loss/hidden": 0.0, + "loss/logits": 0.19433599710464478, + "loss/reg": 320.23626708984375, + "step": 101 + }, + { + "epoch": 0.00255, + "grad_norm": 2.846142053604126, + "grad_norm_var": 0.18289270736203184, + "learning_rate": 0.0001, + "loss": 322.8064, + "loss/crossentropy": 2.977403163909912, + "loss/hidden": 0.0, + "loss/logits": 0.14205776154994965, + "loss/reg": 319.68695068359375, + "step": 102 + }, + { + "epoch": 0.002575, + "grad_norm": 2.762763500213623, + "grad_norm_var": 0.1727341123234955, + "learning_rate": 0.0001, + "loss": 322.0067, + "loss/crossentropy": 2.7616305351257324, + "loss/hidden": 0.0, + "loss/logits": 0.13712918758392334, + "loss/reg": 319.10791015625, + "step": 103 + }, + { + "epoch": 0.0026, + "grad_norm": 2.5470879077911377, + "grad_norm_var": 0.192723543133589, + "learning_rate": 0.0001, + "loss": 321.2095, + "loss/crossentropy": 2.548597812652588, + "loss/hidden": 0.0, + "loss/logits": 0.12305562198162079, + "loss/reg": 318.5378723144531, + "step": 104 + }, + { + "epoch": 0.002625, + "grad_norm": 4.06820821762085, + "grad_norm_var": 0.2491215448449329, + "learning_rate": 0.0001, + "loss": 320.8897, + "loss/crossentropy": 2.7753727436065674, + "loss/hidden": 0.0, + "loss/logits": 0.16259068250656128, + "loss/reg": 317.9517517089844, + "step": 105 + }, + { + "epoch": 0.00265, + "grad_norm": 2.7462382316589355, + "grad_norm_var": 0.25075746320380765, + "learning_rate": 0.0001, + "loss": 320.5133, + "loss/crossentropy": 3.033684492111206, + "loss/hidden": 0.0, + "loss/logits": 0.1321936696767807, + "loss/reg": 317.347412109375, + "step": 106 + }, + { + "epoch": 0.002675, + "grad_norm": 2.9147019386291504, + "grad_norm_var": 0.2522855635872415, + "learning_rate": 0.0001, + "loss": 319.5785, + "loss/crossentropy": 2.6685800552368164, + "loss/hidden": 0.0, + "loss/logits": 0.14506930112838745, + "loss/reg": 316.7648620605469, + "step": 107 + }, + { + "epoch": 0.0027, + "grad_norm": 3.1959245204925537, + "grad_norm_var": 0.2336231557989919, + "learning_rate": 0.0001, + "loss": 319.3165, + "loss/crossentropy": 2.9722442626953125, + "loss/hidden": 0.0, + "loss/logits": 0.14754945039749146, + "loss/reg": 316.1966857910156, + "step": 108 + }, + { + "epoch": 0.002725, + "grad_norm": 3.798722267150879, + "grad_norm_var": 0.2531703418887588, + "learning_rate": 0.0001, + "loss": 319.04, + "loss/crossentropy": 3.2570812702178955, + "loss/hidden": 0.0, + "loss/logits": 0.16630737483501434, + "loss/reg": 315.6166076660156, + "step": 109 + }, + { + "epoch": 0.00275, + "grad_norm": 2.6525461673736572, + "grad_norm_var": 0.27312977627090806, + "learning_rate": 0.0001, + "loss": 317.8362, + "loss/crossentropy": 2.6261277198791504, + "loss/hidden": 0.0, + "loss/logits": 0.14820465445518494, + "loss/reg": 315.0619201660156, + "step": 110 + }, + { + "epoch": 0.002775, + "grad_norm": 3.1293742656707764, + "grad_norm_var": 0.2499447068577022, + "learning_rate": 0.0001, + "loss": 317.2627, + "loss/crossentropy": 2.623718023300171, + "loss/hidden": 0.0, + "loss/logits": 0.14719776809215546, + "loss/reg": 314.4918212890625, + "step": 111 + }, + { + "epoch": 0.0028, + "grad_norm": 15.958823204040527, + "grad_norm_var": 10.398151501641397, + "learning_rate": 0.0001, + "loss": 316.8877, + "loss/crossentropy": 2.8262336254119873, + "loss/hidden": 0.0, + "loss/logits": 0.129408597946167, + "loss/reg": 313.9320373535156, + "step": 112 + }, + { + "epoch": 0.002825, + "grad_norm": 3.9413416385650635, + "grad_norm_var": 10.337541876862074, + "learning_rate": 0.0001, + "loss": 316.3959, + "loss/crossentropy": 2.8791425228118896, + "loss/hidden": 0.0, + "loss/logits": 0.15744474530220032, + "loss/reg": 313.3592834472656, + "step": 113 + }, + { + "epoch": 0.00285, + "grad_norm": 2.8014914989471436, + "grad_norm_var": 10.433906911606512, + "learning_rate": 0.0001, + "loss": 315.6562, + "loss/crossentropy": 2.7462589740753174, + "loss/hidden": 0.0, + "loss/logits": 0.14004458487033844, + "loss/reg": 312.7699279785156, + "step": 114 + }, + { + "epoch": 0.002875, + "grad_norm": 2.7303318977355957, + "grad_norm_var": 10.531872222449612, + "learning_rate": 0.0001, + "loss": 315.0281, + "loss/crossentropy": 2.6918511390686035, + "loss/hidden": 0.0, + "loss/logits": 0.13197588920593262, + "loss/reg": 312.2042541503906, + "step": 115 + }, + { + "epoch": 0.0029, + "grad_norm": 3.1385786533355713, + "grad_norm_var": 10.5392309058265, + "learning_rate": 0.0001, + "loss": 314.5278, + "loss/crossentropy": 2.748079299926758, + "loss/hidden": 0.0, + "loss/logits": 0.15540769696235657, + "loss/reg": 311.6242980957031, + "step": 116 + }, + { + "epoch": 0.002925, + "grad_norm": 2.856105327606201, + "grad_norm_var": 10.591715440353928, + "learning_rate": 0.0001, + "loss": 313.9369, + "loss/crossentropy": 2.706995725631714, + "loss/hidden": 0.0, + "loss/logits": 0.1622162163257599, + "loss/reg": 311.0676574707031, + "step": 117 + }, + { + "epoch": 0.00295, + "grad_norm": 3.0335209369659424, + "grad_norm_var": 10.568067027910804, + "learning_rate": 0.0001, + "loss": 313.4418, + "loss/crossentropy": 2.7954583168029785, + "loss/hidden": 0.0, + "loss/logits": 0.14605656266212463, + "loss/reg": 310.50030517578125, + "step": 118 + }, + { + "epoch": 0.002975, + "grad_norm": 17.778278350830078, + "grad_norm_var": 22.39839291836262, + "learning_rate": 0.0001, + "loss": 313.1016, + "loss/crossentropy": 3.015498399734497, + "loss/hidden": 0.0, + "loss/logits": 0.14635121822357178, + "loss/reg": 309.9397277832031, + "step": 119 + }, + { + "epoch": 0.003, + "grad_norm": 2.5111374855041504, + "grad_norm_var": 22.409419960433475, + "learning_rate": 0.0001, + "loss": 312.4484, + "loss/crossentropy": 2.9234232902526855, + "loss/hidden": 0.0, + "loss/logits": 0.15030893683433533, + "loss/reg": 309.3746337890625, + "step": 120 + }, + { + "epoch": 0.003025, + "grad_norm": 3.0075595378875732, + "grad_norm_var": 22.58724529715737, + "learning_rate": 0.0001, + "loss": 311.6718, + "loss/crossentropy": 2.7128963470458984, + "loss/hidden": 0.0, + "loss/logits": 0.15696708858013153, + "loss/reg": 308.8019714355469, + "step": 121 + }, + { + "epoch": 0.00305, + "grad_norm": 2.8516271114349365, + "grad_norm_var": 22.55961193976418, + "learning_rate": 0.0001, + "loss": 311.5919, + "loss/crossentropy": 3.201800584793091, + "loss/hidden": 0.0, + "loss/logits": 0.1552673727273941, + "loss/reg": 308.2347717285156, + "step": 122 + }, + { + "epoch": 0.003075, + "grad_norm": 2.7313201427459717, + "grad_norm_var": 22.60704699907139, + "learning_rate": 0.0001, + "loss": 310.4214, + "loss/crossentropy": 2.6282145977020264, + "loss/hidden": 0.0, + "loss/logits": 0.13782621920108795, + "loss/reg": 307.6553955078125, + "step": 123 + }, + { + "epoch": 0.0031, + "grad_norm": 3.00699520111084, + "grad_norm_var": 22.64860965541018, + "learning_rate": 0.0001, + "loss": 309.9948, + "loss/crossentropy": 2.773193597793579, + "loss/hidden": 0.0, + "loss/logits": 0.15227621793746948, + "loss/reg": 307.0693359375, + "step": 124 + }, + { + "epoch": 0.003125, + "grad_norm": 2.9907143115997314, + "grad_norm_var": 22.791413325771067, + "learning_rate": 0.0001, + "loss": 309.6375, + "loss/crossentropy": 3.001366138458252, + "loss/hidden": 0.0, + "loss/logits": 0.14761751890182495, + "loss/reg": 306.488525390625, + "step": 125 + }, + { + "epoch": 0.00315, + "grad_norm": 2.7048888206481934, + "grad_norm_var": 22.777330344225966, + "learning_rate": 0.0001, + "loss": 308.8778, + "loss/crossentropy": 2.8160345554351807, + "loss/hidden": 0.0, + "loss/logits": 0.144578754901886, + "loss/reg": 305.9171447753906, + "step": 126 + }, + { + "epoch": 0.003175, + "grad_norm": 3.0401437282562256, + "grad_norm_var": 22.796493590486268, + "learning_rate": 0.0001, + "loss": 308.0832, + "loss/crossentropy": 2.607736825942993, + "loss/hidden": 0.0, + "loss/logits": 0.13729776442050934, + "loss/reg": 305.3381652832031, + "step": 127 + }, + { + "epoch": 0.0032, + "grad_norm": 2.584563732147217, + "grad_norm_var": 13.885740820076437, + "learning_rate": 0.0001, + "loss": 307.6585, + "loss/crossentropy": 2.750492572784424, + "loss/hidden": 0.0, + "loss/logits": 0.13798421621322632, + "loss/reg": 304.77001953125, + "step": 128 + }, + { + "epoch": 0.003225, + "grad_norm": 2.501339912414551, + "grad_norm_var": 13.999106697222624, + "learning_rate": 0.0001, + "loss": 306.8389, + "loss/crossentropy": 2.499746084213257, + "loss/hidden": 0.0, + "loss/logits": 0.14136828482151031, + "loss/reg": 304.19781494140625, + "step": 129 + }, + { + "epoch": 0.00325, + "grad_norm": 3.1528725624084473, + "grad_norm_var": 13.961598599715407, + "learning_rate": 0.0001, + "loss": 306.6842, + "loss/crossentropy": 2.9020321369171143, + "loss/hidden": 0.0, + "loss/logits": 0.15830577909946442, + "loss/reg": 303.62384033203125, + "step": 130 + }, + { + "epoch": 0.003275, + "grad_norm": 2.893075704574585, + "grad_norm_var": 13.94028717778272, + "learning_rate": 0.0001, + "loss": 305.9274, + "loss/crossentropy": 2.743729591369629, + "loss/hidden": 0.0, + "loss/logits": 0.14728468656539917, + "loss/reg": 303.0364074707031, + "step": 131 + }, + { + "epoch": 0.0033, + "grad_norm": 3.0060131549835205, + "grad_norm_var": 13.953057327464618, + "learning_rate": 0.0001, + "loss": 305.4517, + "loss/crossentropy": 2.834550142288208, + "loss/hidden": 0.0, + "loss/logits": 0.16237227618694305, + "loss/reg": 302.4547424316406, + "step": 132 + }, + { + "epoch": 0.003325, + "grad_norm": 3.0694620609283447, + "grad_norm_var": 13.929317309938057, + "learning_rate": 0.0001, + "loss": 304.5747, + "loss/crossentropy": 2.5429139137268066, + "loss/hidden": 0.0, + "loss/logits": 0.1559884250164032, + "loss/reg": 301.8758544921875, + "step": 133 + }, + { + "epoch": 0.00335, + "grad_norm": 2.8518848419189453, + "grad_norm_var": 13.950038126308876, + "learning_rate": 0.0001, + "loss": 304.1976, + "loss/crossentropy": 2.765056610107422, + "loss/hidden": 0.0, + "loss/logits": 0.14854753017425537, + "loss/reg": 301.28399658203125, + "step": 134 + }, + { + "epoch": 0.003375, + "grad_norm": 3.1176578998565674, + "grad_norm_var": 0.044937653308535865, + "learning_rate": 0.0001, + "loss": 303.7528, + "loss/crossentropy": 2.9260571002960205, + "loss/hidden": 0.0, + "loss/logits": 0.1468181163072586, + "loss/reg": 300.6799011230469, + "step": 135 + }, + { + "epoch": 0.0034, + "grad_norm": 2.880009889602661, + "grad_norm_var": 0.035480645828153946, + "learning_rate": 0.0001, + "loss": 302.9741, + "loss/crossentropy": 2.736276149749756, + "loss/hidden": 0.0, + "loss/logits": 0.1469912827014923, + "loss/reg": 300.0908508300781, + "step": 136 + }, + { + "epoch": 0.003425, + "grad_norm": 3.2396042346954346, + "grad_norm_var": 0.04219284656746065, + "learning_rate": 0.0001, + "loss": 302.0787, + "loss/crossentropy": 2.436084747314453, + "loss/hidden": 0.0, + "loss/logits": 0.15764698386192322, + "loss/reg": 299.4849548339844, + "step": 137 + }, + { + "epoch": 0.00345, + "grad_norm": 2.818772315979004, + "grad_norm_var": 0.04253304441969187, + "learning_rate": 0.0001, + "loss": 301.9017, + "loss/crossentropy": 2.8690006732940674, + "loss/hidden": 0.0, + "loss/logits": 0.13555486500263214, + "loss/reg": 298.8971252441406, + "step": 138 + }, + { + "epoch": 0.003475, + "grad_norm": 3.1128132343292236, + "grad_norm_var": 0.042447214695410435, + "learning_rate": 0.0001, + "loss": 301.0966, + "loss/crossentropy": 2.6258418560028076, + "loss/hidden": 0.0, + "loss/logits": 0.17426033318042755, + "loss/reg": 298.2965393066406, + "step": 139 + }, + { + "epoch": 0.0035, + "grad_norm": 3.2976646423339844, + "grad_norm_var": 0.05049181223860704, + "learning_rate": 0.0001, + "loss": 301.2447, + "loss/crossentropy": 3.3375208377838135, + "loss/hidden": 0.0, + "loss/logits": 0.19012662768363953, + "loss/reg": 297.7170104980469, + "step": 140 + }, + { + "epoch": 0.003525, + "grad_norm": 2.7214531898498535, + "grad_norm_var": 0.05369940885392074, + "learning_rate": 0.0001, + "loss": 299.7301, + "loss/crossentropy": 2.44716477394104, + "loss/hidden": 0.0, + "loss/logits": 0.14688129723072052, + "loss/reg": 297.13604736328125, + "step": 141 + }, + { + "epoch": 0.00355, + "grad_norm": 3.3967669010162354, + "grad_norm_var": 0.0622042440975612, + "learning_rate": 0.0001, + "loss": 299.2944, + "loss/crossentropy": 2.5750997066497803, + "loss/hidden": 0.0, + "loss/logits": 0.17346450686454773, + "loss/reg": 296.5458068847656, + "step": 142 + }, + { + "epoch": 0.003575, + "grad_norm": 2.718705654144287, + "grad_norm_var": 0.06609520888261215, + "learning_rate": 0.0001, + "loss": 298.7035, + "loss/crossentropy": 2.576488733291626, + "loss/hidden": 0.0, + "loss/logits": 0.1555417776107788, + "loss/reg": 295.9714660644531, + "step": 143 + }, + { + "epoch": 0.0036, + "grad_norm": 3.459041118621826, + "grad_norm_var": 0.07009550701137926, + "learning_rate": 0.0001, + "loss": 298.3419, + "loss/crossentropy": 2.7831904888153076, + "loss/hidden": 0.0, + "loss/logits": 0.16926178336143494, + "loss/reg": 295.3894958496094, + "step": 144 + }, + { + "epoch": 0.003625, + "grad_norm": 3.599822998046875, + "grad_norm_var": 0.07030535777098426, + "learning_rate": 0.0001, + "loss": 298.2544, + "loss/crossentropy": 3.2596793174743652, + "loss/hidden": 0.0, + "loss/logits": 0.18854370713233948, + "loss/reg": 294.80621337890625, + "step": 145 + }, + { + "epoch": 0.00365, + "grad_norm": 3.6367578506469727, + "grad_norm_var": 0.08941673085661629, + "learning_rate": 0.0001, + "loss": 297.6298, + "loss/crossentropy": 3.228911876678467, + "loss/hidden": 0.0, + "loss/logits": 0.15578624606132507, + "loss/reg": 294.24505615234375, + "step": 146 + }, + { + "epoch": 0.003675, + "grad_norm": 3.3731987476348877, + "grad_norm_var": 0.08969931689454427, + "learning_rate": 0.0001, + "loss": 296.5468, + "loss/crossentropy": 2.6783909797668457, + "loss/hidden": 0.0, + "loss/logits": 0.18989479541778564, + "loss/reg": 293.678466796875, + "step": 147 + }, + { + "epoch": 0.0037, + "grad_norm": 3.004645347595215, + "grad_norm_var": 0.08972454925701427, + "learning_rate": 0.0001, + "loss": 296.139, + "loss/crossentropy": 2.887582302093506, + "loss/hidden": 0.0, + "loss/logits": 0.15772318840026855, + "loss/reg": 293.09368896484375, + "step": 148 + }, + { + "epoch": 0.003725, + "grad_norm": 3.8851213455200195, + "grad_norm_var": 0.1232384713331688, + "learning_rate": 0.0001, + "loss": 295.1292, + "loss/crossentropy": 2.43943452835083, + "loss/hidden": 0.0, + "loss/logits": 0.17688119411468506, + "loss/reg": 292.5129089355469, + "step": 149 + }, + { + "epoch": 0.00375, + "grad_norm": 2.969780206680298, + "grad_norm_var": 0.11871959357580385, + "learning_rate": 0.0001, + "loss": 294.82, + "loss/crossentropy": 2.720794439315796, + "loss/hidden": 0.0, + "loss/logits": 0.14547483623027802, + "loss/reg": 291.9537658691406, + "step": 150 + }, + { + "epoch": 0.003775, + "grad_norm": 3.3458027839660645, + "grad_norm_var": 0.1194074455570662, + "learning_rate": 0.0001, + "loss": 294.4663, + "loss/crossentropy": 2.914644718170166, + "loss/hidden": 0.0, + "loss/logits": 0.19076432287693024, + "loss/reg": 291.3608703613281, + "step": 151 + }, + { + "epoch": 0.0038, + "grad_norm": 2.9391496181488037, + "grad_norm_var": 0.11697470608086556, + "learning_rate": 0.0001, + "loss": 294.1329, + "loss/crossentropy": 3.177144765853882, + "loss/hidden": 0.0, + "loss/logits": 0.17206624150276184, + "loss/reg": 290.7837219238281, + "step": 152 + }, + { + "epoch": 0.003825, + "grad_norm": 3.448251485824585, + "grad_norm_var": 0.12024250794295975, + "learning_rate": 0.0001, + "loss": 293.2957, + "loss/crossentropy": 2.916529893875122, + "loss/hidden": 0.0, + "loss/logits": 0.18904531002044678, + "loss/reg": 290.1900939941406, + "step": 153 + }, + { + "epoch": 0.00385, + "grad_norm": 2.7693159580230713, + "grad_norm_var": 0.12312676691166922, + "learning_rate": 0.0001, + "loss": 292.1465, + "loss/crossentropy": 2.3761188983917236, + "loss/hidden": 0.0, + "loss/logits": 0.16432620584964752, + "loss/reg": 289.6059875488281, + "step": 154 + }, + { + "epoch": 0.003875, + "grad_norm": 2.8227667808532715, + "grad_norm_var": 0.13291251787620695, + "learning_rate": 0.0001, + "loss": 291.6444, + "loss/crossentropy": 2.4790537357330322, + "loss/hidden": 0.0, + "loss/logits": 0.15044492483139038, + "loss/reg": 289.0148620605469, + "step": 155 + }, + { + "epoch": 0.0039, + "grad_norm": 2.769251823425293, + "grad_norm_var": 0.14431173200531475, + "learning_rate": 0.0001, + "loss": 291.3051, + "loss/crossentropy": 2.724376916885376, + "loss/hidden": 0.0, + "loss/logits": 0.15646930038928986, + "loss/reg": 288.42431640625, + "step": 156 + }, + { + "epoch": 0.003925, + "grad_norm": 2.9450161457061768, + "grad_norm_var": 0.1338045365052719, + "learning_rate": 0.0001, + "loss": 290.7092, + "loss/crossentropy": 2.7232112884521484, + "loss/hidden": 0.0, + "loss/logits": 0.17326687276363373, + "loss/reg": 287.81268310546875, + "step": 157 + }, + { + "epoch": 0.00395, + "grad_norm": 2.7544944286346436, + "grad_norm_var": 0.1421121590872642, + "learning_rate": 0.0001, + "loss": 289.9852, + "loss/crossentropy": 2.628100633621216, + "loss/hidden": 0.0, + "loss/logits": 0.15836934745311737, + "loss/reg": 287.1986999511719, + "step": 158 + }, + { + "epoch": 0.003975, + "grad_norm": 3.282729148864746, + "grad_norm_var": 0.12936684677523522, + "learning_rate": 0.0001, + "loss": 289.6616, + "loss/crossentropy": 2.853585720062256, + "loss/hidden": 0.0, + "loss/logits": 0.20318502187728882, + "loss/reg": 286.6048583984375, + "step": 159 + }, + { + "epoch": 0.004, + "grad_norm": 2.7608420848846436, + "grad_norm_var": 0.1345857719286831, + "learning_rate": 0.0001, + "loss": 288.7971, + "loss/crossentropy": 2.639310836791992, + "loss/hidden": 0.0, + "loss/logits": 0.15059445798397064, + "loss/reg": 286.0071716308594, + "step": 160 + }, + { + "epoch": 0.004025, + "grad_norm": 2.615666151046753, + "grad_norm_var": 0.1353317229456477, + "learning_rate": 0.0001, + "loss": 288.2175, + "loss/crossentropy": 2.6622371673583984, + "loss/hidden": 0.0, + "loss/logits": 0.1381928026676178, + "loss/reg": 285.41705322265625, + "step": 161 + }, + { + "epoch": 0.00405, + "grad_norm": 2.699389934539795, + "grad_norm_var": 0.12099720896805645, + "learning_rate": 0.0001, + "loss": 287.8594, + "loss/crossentropy": 2.9092233180999756, + "loss/hidden": 0.0, + "loss/logits": 0.14686957001686096, + "loss/reg": 284.8033142089844, + "step": 162 + }, + { + "epoch": 0.004075, + "grad_norm": 2.52980375289917, + "grad_norm_var": 0.12619606783641663, + "learning_rate": 0.0001, + "loss": 287.099, + "loss/crossentropy": 2.7334139347076416, + "loss/hidden": 0.0, + "loss/logits": 0.1602194458246231, + "loss/reg": 284.2053527832031, + "step": 163 + }, + { + "epoch": 0.0041, + "grad_norm": 2.9028260707855225, + "grad_norm_var": 0.1263923635326608, + "learning_rate": 0.0001, + "loss": 286.6346, + "loss/crossentropy": 2.8802831172943115, + "loss/hidden": 0.0, + "loss/logits": 0.1618650257587433, + "loss/reg": 283.59246826171875, + "step": 164 + }, + { + "epoch": 0.004125, + "grad_norm": 3.010094404220581, + "grad_norm_var": 0.06689759190688846, + "learning_rate": 0.0001, + "loss": 286.137, + "loss/crossentropy": 2.9807565212249756, + "loss/hidden": 0.0, + "loss/logits": 0.17984265089035034, + "loss/reg": 282.9764404296875, + "step": 165 + }, + { + "epoch": 0.00415, + "grad_norm": 2.747976779937744, + "grad_norm_var": 0.06821403807519436, + "learning_rate": 0.0001, + "loss": 285.1411, + "loss/crossentropy": 2.6191065311431885, + "loss/hidden": 0.0, + "loss/logits": 0.17148274183273315, + "loss/reg": 282.3504943847656, + "step": 166 + }, + { + "epoch": 0.004175, + "grad_norm": 2.72310471534729, + "grad_norm_var": 0.05514136557764762, + "learning_rate": 0.0001, + "loss": 284.5961, + "loss/crossentropy": 2.7177231311798096, + "loss/hidden": 0.0, + "loss/logits": 0.15355822443962097, + "loss/reg": 281.72479248046875, + "step": 167 + }, + { + "epoch": 0.0042, + "grad_norm": 2.5135159492492676, + "grad_norm_var": 0.06183281601049633, + "learning_rate": 0.0001, + "loss": 283.7144, + "loss/crossentropy": 2.4525184631347656, + "loss/hidden": 0.0, + "loss/logits": 0.13518790900707245, + "loss/reg": 281.1266784667969, + "step": 168 + }, + { + "epoch": 0.004225, + "grad_norm": 2.6755948066711426, + "grad_norm_var": 0.03554926963080618, + "learning_rate": 0.0001, + "loss": 283.5094, + "loss/crossentropy": 2.8291640281677246, + "loss/hidden": 0.0, + "loss/logits": 0.17008362710475922, + "loss/reg": 280.5101318359375, + "step": 169 + }, + { + "epoch": 0.00425, + "grad_norm": 3.0268986225128174, + "grad_norm_var": 0.03923814612245735, + "learning_rate": 0.0001, + "loss": 283.1964, + "loss/crossentropy": 3.105539083480835, + "loss/hidden": 0.0, + "loss/logits": 0.18000483512878418, + "loss/reg": 279.9109191894531, + "step": 170 + }, + { + "epoch": 0.004275, + "grad_norm": 2.5846283435821533, + "grad_norm_var": 0.04201988364738796, + "learning_rate": 0.0001, + "loss": 282.1588, + "loss/crossentropy": 2.6842048168182373, + "loss/hidden": 0.0, + "loss/logits": 0.16073930263519287, + "loss/reg": 279.3138732910156, + "step": 171 + }, + { + "epoch": 0.0043, + "grad_norm": 2.8193604946136475, + "grad_norm_var": 0.0420791835209684, + "learning_rate": 0.0001, + "loss": 281.6269, + "loss/crossentropy": 2.7535877227783203, + "loss/hidden": 0.0, + "loss/logits": 0.17149388790130615, + "loss/reg": 278.7017822265625, + "step": 172 + }, + { + "epoch": 0.004325, + "grad_norm": 2.695707321166992, + "grad_norm_var": 0.04071110069445254, + "learning_rate": 0.0001, + "loss": 280.9163, + "loss/crossentropy": 2.694293260574341, + "loss/hidden": 0.0, + "loss/logits": 0.15487328171730042, + "loss/reg": 278.0671081542969, + "step": 173 + }, + { + "epoch": 0.00435, + "grad_norm": 3.0142641067504883, + "grad_norm_var": 0.04434257349895461, + "learning_rate": 0.0001, + "loss": 280.5464, + "loss/crossentropy": 2.912869691848755, + "loss/hidden": 0.0, + "loss/logits": 0.1794903725385666, + "loss/reg": 277.45404052734375, + "step": 174 + }, + { + "epoch": 0.004375, + "grad_norm": 3.4833621978759766, + "grad_norm_var": 0.060102318830361885, + "learning_rate": 0.0001, + "loss": 280.0757, + "loss/crossentropy": 3.031020164489746, + "loss/hidden": 0.0, + "loss/logits": 0.1958397924900055, + "loss/reg": 276.84881591796875, + "step": 175 + }, + { + "epoch": 0.0044, + "grad_norm": 2.6899683475494385, + "grad_norm_var": 0.060788090400682414, + "learning_rate": 0.0001, + "loss": 279.0604, + "loss/crossentropy": 2.689755439758301, + "loss/hidden": 0.0, + "loss/logits": 0.1408371478319168, + "loss/reg": 276.22979736328125, + "step": 176 + }, + { + "epoch": 0.004425, + "grad_norm": 2.686345338821411, + "grad_norm_var": 0.059403126018499584, + "learning_rate": 0.0001, + "loss": 278.8184, + "loss/crossentropy": 3.0344579219818115, + "loss/hidden": 0.0, + "loss/logits": 0.1603156328201294, + "loss/reg": 275.6236267089844, + "step": 177 + }, + { + "epoch": 0.00445, + "grad_norm": 2.9537172317504883, + "grad_norm_var": 0.060028034669986144, + "learning_rate": 0.0001, + "loss": 277.8445, + "loss/crossentropy": 2.6497297286987305, + "loss/hidden": 0.0, + "loss/logits": 0.1772124469280243, + "loss/reg": 275.01751708984375, + "step": 178 + }, + { + "epoch": 0.004475, + "grad_norm": 2.6830756664276123, + "grad_norm_var": 0.055646030147755474, + "learning_rate": 0.0001, + "loss": 277.3781, + "loss/crossentropy": 2.7995009422302246, + "loss/hidden": 0.0, + "loss/logits": 0.15789446234703064, + "loss/reg": 274.420654296875, + "step": 179 + }, + { + "epoch": 0.0045, + "grad_norm": 2.8642189502716064, + "grad_norm_var": 0.05534192722217289, + "learning_rate": 0.0001, + "loss": 276.8572, + "loss/crossentropy": 2.8247008323669434, + "loss/hidden": 0.0, + "loss/logits": 0.19499436020851135, + "loss/reg": 273.8375244140625, + "step": 180 + }, + { + "epoch": 0.004525, + "grad_norm": 2.3742892742156982, + "grad_norm_var": 0.06476700330631478, + "learning_rate": 0.0001, + "loss": 276.0537, + "loss/crossentropy": 2.6782188415527344, + "loss/hidden": 0.0, + "loss/logits": 0.14065401256084442, + "loss/reg": 273.2348327636719, + "step": 181 + }, + { + "epoch": 0.00455, + "grad_norm": 2.8511719703674316, + "grad_norm_var": 0.06494378033136528, + "learning_rate": 0.0001, + "loss": 275.8217, + "loss/crossentropy": 3.0019702911376953, + "loss/hidden": 0.0, + "loss/logits": 0.17122197151184082, + "loss/reg": 272.6484375, + "step": 182 + }, + { + "epoch": 0.004575, + "grad_norm": 2.4934184551239014, + "grad_norm_var": 0.07028818692612214, + "learning_rate": 0.0001, + "loss": 275.005, + "loss/crossentropy": 2.765932559967041, + "loss/hidden": 0.0, + "loss/logits": 0.1687726229429245, + "loss/reg": 272.0703125, + "step": 183 + }, + { + "epoch": 0.0046, + "grad_norm": 3.0428080558776855, + "grad_norm_var": 0.06930197860402411, + "learning_rate": 0.0001, + "loss": 274.319, + "loss/crossentropy": 2.6140480041503906, + "loss/hidden": 0.0, + "loss/logits": 0.20197075605392456, + "loss/reg": 271.50299072265625, + "step": 184 + }, + { + "epoch": 0.004625, + "grad_norm": 2.7042367458343506, + "grad_norm_var": 0.06884502087402401, + "learning_rate": 0.0001, + "loss": 273.7751, + "loss/crossentropy": 2.7085049152374268, + "loss/hidden": 0.0, + "loss/logits": 0.16187983751296997, + "loss/reg": 270.90478515625, + "step": 185 + }, + { + "epoch": 0.00465, + "grad_norm": 2.4192299842834473, + "grad_norm_var": 0.07438801189002385, + "learning_rate": 0.0001, + "loss": 272.9952, + "loss/crossentropy": 2.509551525115967, + "loss/hidden": 0.0, + "loss/logits": 0.15606564283370972, + "loss/reg": 270.3295593261719, + "step": 186 + }, + { + "epoch": 0.004675, + "grad_norm": 2.6057181358337402, + "grad_norm_var": 0.07388755541776296, + "learning_rate": 0.0001, + "loss": 272.7285, + "loss/crossentropy": 2.832514762878418, + "loss/hidden": 0.0, + "loss/logits": 0.1625734269618988, + "loss/reg": 269.7333984375, + "step": 187 + }, + { + "epoch": 0.0047, + "grad_norm": 2.5072972774505615, + "grad_norm_var": 0.07807856050180723, + "learning_rate": 0.0001, + "loss": 272.1894, + "loss/crossentropy": 2.8929169178009033, + "loss/hidden": 0.0, + "loss/logits": 0.15297307074069977, + "loss/reg": 269.1435241699219, + "step": 188 + }, + { + "epoch": 0.004725, + "grad_norm": 2.668285369873047, + "grad_norm_var": 0.07833979493371525, + "learning_rate": 0.0001, + "loss": 271.5161, + "loss/crossentropy": 2.798143148422241, + "loss/hidden": 0.0, + "loss/logits": 0.1715821623802185, + "loss/reg": 268.5463562011719, + "step": 189 + }, + { + "epoch": 0.00475, + "grad_norm": 2.869302272796631, + "grad_norm_var": 0.07459542490979629, + "learning_rate": 0.0001, + "loss": 271.0226, + "loss/crossentropy": 2.913928270339966, + "loss/hidden": 0.0, + "loss/logits": 0.16282354295253754, + "loss/reg": 267.94586181640625, + "step": 190 + }, + { + "epoch": 0.004775, + "grad_norm": 2.4999892711639404, + "grad_norm_var": 0.03802990774269475, + "learning_rate": 0.0001, + "loss": 270.1609, + "loss/crossentropy": 2.6663661003112793, + "loss/hidden": 0.0, + "loss/logits": 0.1597089171409607, + "loss/reg": 267.33489990234375, + "step": 191 + }, + { + "epoch": 0.0048, + "grad_norm": 2.7010915279388428, + "grad_norm_var": 0.03804935894705916, + "learning_rate": 0.0001, + "loss": 269.6252, + "loss/crossentropy": 2.7287211418151855, + "loss/hidden": 0.0, + "loss/logits": 0.1760062277317047, + "loss/reg": 266.720458984375, + "step": 192 + }, + { + "epoch": 0.004825, + "grad_norm": 2.635450839996338, + "grad_norm_var": 0.03818693477124479, + "learning_rate": 0.0001, + "loss": 269.0576, + "loss/crossentropy": 2.7622997760772705, + "loss/hidden": 0.0, + "loss/logits": 0.1753700077533722, + "loss/reg": 266.11993408203125, + "step": 193 + }, + { + "epoch": 0.00485, + "grad_norm": 2.54504656791687, + "grad_norm_var": 0.03368765909132942, + "learning_rate": 0.0001, + "loss": 268.4639, + "loss/crossentropy": 2.774796962738037, + "loss/hidden": 0.0, + "loss/logits": 0.16008035838603973, + "loss/reg": 265.5290222167969, + "step": 194 + }, + { + "epoch": 0.004875, + "grad_norm": 2.8884477615356445, + "grad_norm_var": 0.03711886375720705, + "learning_rate": 0.0001, + "loss": 267.7791, + "loss/crossentropy": 2.678165912628174, + "loss/hidden": 0.0, + "loss/logits": 0.16350409388542175, + "loss/reg": 264.9374694824219, + "step": 195 + }, + { + "epoch": 0.0049, + "grad_norm": 3.0534660816192627, + "grad_norm_var": 0.044336834869120406, + "learning_rate": 0.0001, + "loss": 267.5437, + "loss/crossentropy": 2.990952491760254, + "loss/hidden": 0.0, + "loss/logits": 0.20335815846920013, + "loss/reg": 264.3493957519531, + "step": 196 + }, + { + "epoch": 0.004925, + "grad_norm": 2.8830363750457764, + "grad_norm_var": 0.03986402384874263, + "learning_rate": 0.0001, + "loss": 266.6284, + "loss/crossentropy": 2.674790859222412, + "loss/hidden": 0.0, + "loss/logits": 0.18334966897964478, + "loss/reg": 263.77020263671875, + "step": 197 + }, + { + "epoch": 0.00495, + "grad_norm": 3.1203083992004395, + "grad_norm_var": 0.04943917591481958, + "learning_rate": 0.0001, + "loss": 265.9243, + "loss/crossentropy": 2.5693366527557373, + "loss/hidden": 0.0, + "loss/logits": 0.16054046154022217, + "loss/reg": 263.1944580078125, + "step": 198 + }, + { + "epoch": 0.004975, + "grad_norm": 2.7858941555023193, + "grad_norm_var": 0.04566411871986986, + "learning_rate": 0.0001, + "loss": 265.842, + "loss/crossentropy": 3.063640832901001, + "loss/hidden": 0.0, + "loss/logits": 0.1918787658214569, + "loss/reg": 262.5865478515625, + "step": 199 + }, + { + "epoch": 0.005, + "grad_norm": 4.905181407928467, + "grad_norm_var": 0.3362427866457504, + "learning_rate": 0.0001, + "loss": 265.0334, + "loss/crossentropy": 2.75864839553833, + "loss/hidden": 0.0, + "loss/logits": 0.28906920552253723, + "loss/reg": 261.9857177734375, + "step": 200 + }, + { + "epoch": 0.005025, + "grad_norm": 2.969449281692505, + "grad_norm_var": 0.33506015925643545, + "learning_rate": 0.0001, + "loss": 264.667, + "loss/crossentropy": 3.093539237976074, + "loss/hidden": 0.0, + "loss/logits": 0.19913670420646667, + "loss/reg": 261.37432861328125, + "step": 201 + }, + { + "epoch": 0.00505, + "grad_norm": 3.2088537216186523, + "grad_norm_var": 0.32566799990582446, + "learning_rate": 0.0001, + "loss": 264.2178, + "loss/crossentropy": 3.255889415740967, + "loss/hidden": 0.0, + "loss/logits": 0.20012566447257996, + "loss/reg": 260.76177978515625, + "step": 202 + }, + { + "epoch": 0.005075, + "grad_norm": 3.11022686958313, + "grad_norm_var": 0.3199018318121316, + "learning_rate": 0.0001, + "loss": 263.1096, + "loss/crossentropy": 2.753197193145752, + "loss/hidden": 0.0, + "loss/logits": 0.19567176699638367, + "loss/reg": 260.16070556640625, + "step": 203 + }, + { + "epoch": 0.0051, + "grad_norm": 2.5052154064178467, + "grad_norm_var": 0.32002761472599534, + "learning_rate": 0.0001, + "loss": 262.7169, + "loss/crossentropy": 2.981990098953247, + "loss/hidden": 0.0, + "loss/logits": 0.17743879556655884, + "loss/reg": 259.55743408203125, + "step": 204 + }, + { + "epoch": 0.005125, + "grad_norm": 3.437074899673462, + "grad_norm_var": 0.3271340622124995, + "learning_rate": 0.0001, + "loss": 262.1845, + "loss/crossentropy": 3.0462844371795654, + "loss/hidden": 0.0, + "loss/logits": 0.17453166842460632, + "loss/reg": 258.96368408203125, + "step": 205 + }, + { + "epoch": 0.00515, + "grad_norm": 3.3540172576904297, + "grad_norm_var": 0.33289475403727997, + "learning_rate": 0.0001, + "loss": 261.2446, + "loss/crossentropy": 2.684351682662964, + "loss/hidden": 0.0, + "loss/logits": 0.18615120649337769, + "loss/reg": 258.37408447265625, + "step": 206 + }, + { + "epoch": 0.005175, + "grad_norm": 2.6485707759857178, + "grad_norm_var": 0.32362257450873433, + "learning_rate": 0.0001, + "loss": 260.6506, + "loss/crossentropy": 2.712137222290039, + "loss/hidden": 0.0, + "loss/logits": 0.16978460550308228, + "loss/reg": 257.7686767578125, + "step": 207 + }, + { + "epoch": 0.0052, + "grad_norm": 2.638559103012085, + "grad_norm_var": 0.326750686147299, + "learning_rate": 0.0001, + "loss": 259.9714, + "loss/crossentropy": 2.6442058086395264, + "loss/hidden": 0.0, + "loss/logits": 0.16394683718681335, + "loss/reg": 257.1632385253906, + "step": 208 + }, + { + "epoch": 0.005225, + "grad_norm": 2.62022066116333, + "grad_norm_var": 0.32759289115149387, + "learning_rate": 0.0001, + "loss": 259.6152, + "loss/crossentropy": 2.86051607131958, + "loss/hidden": 0.0, + "loss/logits": 0.1837988793849945, + "loss/reg": 256.5708923339844, + "step": 209 + }, + { + "epoch": 0.00525, + "grad_norm": 3.0118000507354736, + "grad_norm_var": 0.31027566591164846, + "learning_rate": 0.0001, + "loss": 258.8864, + "loss/crossentropy": 2.7158284187316895, + "loss/hidden": 0.0, + "loss/logits": 0.18835628032684326, + "loss/reg": 255.98226928710938, + "step": 210 + }, + { + "epoch": 0.005275, + "grad_norm": 2.738693952560425, + "grad_norm_var": 0.31532774991742346, + "learning_rate": 0.0001, + "loss": 258.2583, + "loss/crossentropy": 2.6809372901916504, + "loss/hidden": 0.0, + "loss/logits": 0.1898835152387619, + "loss/reg": 255.387451171875, + "step": 211 + }, + { + "epoch": 0.0053, + "grad_norm": 2.739337205886841, + "grad_norm_var": 0.32184874512720374, + "learning_rate": 0.0001, + "loss": 257.8907, + "loss/crossentropy": 2.906891107559204, + "loss/hidden": 0.0, + "loss/logits": 0.1842600256204605, + "loss/reg": 254.79959106445312, + "step": 212 + }, + { + "epoch": 0.005325, + "grad_norm": 5.883702754974365, + "grad_norm_var": 0.820888078604249, + "learning_rate": 0.0001, + "loss": 257.1401, + "loss/crossentropy": 2.7662065029144287, + "loss/hidden": 0.0, + "loss/logits": 0.17315037548542023, + "loss/reg": 254.2007293701172, + "step": 213 + }, + { + "epoch": 0.00535, + "grad_norm": 3.2972004413604736, + "grad_norm_var": 0.8202608766175215, + "learning_rate": 0.0001, + "loss": 256.5279, + "loss/crossentropy": 2.737523317337036, + "loss/hidden": 0.0, + "loss/logits": 0.1854221224784851, + "loss/reg": 253.6049346923828, + "step": 214 + }, + { + "epoch": 0.005375, + "grad_norm": 3.02815580368042, + "grad_norm_var": 0.8092324619971265, + "learning_rate": 0.0001, + "loss": 256.0627, + "loss/crossentropy": 2.8625571727752686, + "loss/hidden": 0.0, + "loss/logits": 0.19949959218502045, + "loss/reg": 253.0006866455078, + "step": 215 + }, + { + "epoch": 0.0054, + "grad_norm": 3.2634494304656982, + "grad_norm_var": 0.6166894091876105, + "learning_rate": 0.0001, + "loss": 255.4964, + "loss/crossentropy": 2.924158811569214, + "loss/hidden": 0.0, + "loss/logits": 0.16927270591259003, + "loss/reg": 252.40298461914062, + "step": 216 + }, + { + "epoch": 0.005425, + "grad_norm": 3.190610647201538, + "grad_norm_var": 0.614321823565594, + "learning_rate": 0.0001, + "loss": 254.9168, + "loss/crossentropy": 2.959676742553711, + "loss/hidden": 0.0, + "loss/logits": 0.1694745123386383, + "loss/reg": 251.78762817382812, + "step": 217 + }, + { + "epoch": 0.00545, + "grad_norm": 2.910163402557373, + "grad_norm_var": 0.6182401597326245, + "learning_rate": 0.0001, + "loss": 254.3778, + "loss/crossentropy": 3.0126121044158936, + "loss/hidden": 0.0, + "loss/logits": 0.19637390971183777, + "loss/reg": 251.16880798339844, + "step": 218 + }, + { + "epoch": 0.005475, + "grad_norm": 2.5100033283233643, + "grad_norm_var": 0.6438249148085596, + "learning_rate": 0.0001, + "loss": 253.619, + "loss/crossentropy": 2.8760910034179688, + "loss/hidden": 0.0, + "loss/logits": 0.17724955081939697, + "loss/reg": 250.565673828125, + "step": 219 + }, + { + "epoch": 0.0055, + "grad_norm": 2.6412065029144287, + "grad_norm_var": 0.6339957102239564, + "learning_rate": 0.0001, + "loss": 253.0932, + "loss/crossentropy": 2.9451711177825928, + "loss/hidden": 0.0, + "loss/logits": 0.1847916692495346, + "loss/reg": 249.96322631835938, + "step": 220 + }, + { + "epoch": 0.005525, + "grad_norm": 2.4829912185668945, + "grad_norm_var": 0.6504949610281291, + "learning_rate": 0.0001, + "loss": 251.9582, + "loss/crossentropy": 2.4317898750305176, + "loss/hidden": 0.0, + "loss/logits": 0.15323440730571747, + "loss/reg": 249.37318420410156, + "step": 221 + }, + { + "epoch": 0.00555, + "grad_norm": 2.709721565246582, + "grad_norm_var": 0.6511748224192303, + "learning_rate": 0.0001, + "loss": 251.9418, + "loss/crossentropy": 2.9580609798431396, + "loss/hidden": 0.0, + "loss/logits": 0.19112282991409302, + "loss/reg": 248.7926788330078, + "step": 222 + }, + { + "epoch": 0.005575, + "grad_norm": 2.7896413803100586, + "grad_norm_var": 0.6454388623794479, + "learning_rate": 0.0001, + "loss": 251.1011, + "loss/crossentropy": 2.6989221572875977, + "loss/hidden": 0.0, + "loss/logits": 0.18577811121940613, + "loss/reg": 248.21641540527344, + "step": 223 + }, + { + "epoch": 0.0056, + "grad_norm": 2.763256549835205, + "grad_norm_var": 0.6399279824277821, + "learning_rate": 0.0001, + "loss": 250.6324, + "loss/crossentropy": 2.8038721084594727, + "loss/hidden": 0.0, + "loss/logits": 0.19551604986190796, + "loss/reg": 247.633056640625, + "step": 224 + }, + { + "epoch": 0.005625, + "grad_norm": 2.6225526332855225, + "grad_norm_var": 0.6397989634558596, + "learning_rate": 0.0001, + "loss": 250.0981, + "loss/crossentropy": 2.873964548110962, + "loss/hidden": 0.0, + "loss/logits": 0.18002215027809143, + "loss/reg": 247.0440673828125, + "step": 225 + }, + { + "epoch": 0.00565, + "grad_norm": 2.7640974521636963, + "grad_norm_var": 0.6444463916989489, + "learning_rate": 0.0001, + "loss": 249.6578, + "loss/crossentropy": 3.0052733421325684, + "loss/hidden": 0.0, + "loss/logits": 0.19472980499267578, + "loss/reg": 246.45779418945312, + "step": 226 + }, + { + "epoch": 0.005675, + "grad_norm": 4.11354398727417, + "grad_norm_var": 0.7108481451659288, + "learning_rate": 0.0001, + "loss": 249.1703, + "loss/crossentropy": 3.090904951095581, + "loss/hidden": 0.0, + "loss/logits": 0.20938721299171448, + "loss/reg": 245.87001037597656, + "step": 227 + }, + { + "epoch": 0.0057, + "grad_norm": 2.749560594558716, + "grad_norm_var": 0.7103537111133307, + "learning_rate": 0.0001, + "loss": 247.8932, + "loss/crossentropy": 2.4375710487365723, + "loss/hidden": 0.0, + "loss/logits": 0.16894645988941193, + "loss/reg": 245.28668212890625, + "step": 228 + }, + { + "epoch": 0.005725, + "grad_norm": 2.942262649536133, + "grad_norm_var": 0.16230004133669051, + "learning_rate": 0.0001, + "loss": 247.8172, + "loss/crossentropy": 2.9423258304595947, + "loss/hidden": 0.0, + "loss/logits": 0.1861574649810791, + "loss/reg": 244.6887664794922, + "step": 229 + }, + { + "epoch": 0.00575, + "grad_norm": 2.7158396244049072, + "grad_norm_var": 0.1544682228743985, + "learning_rate": 0.0001, + "loss": 246.9261, + "loss/crossentropy": 2.6655476093292236, + "loss/hidden": 0.0, + "loss/logits": 0.1642124503850937, + "loss/reg": 244.0963592529297, + "step": 230 + }, + { + "epoch": 0.005775, + "grad_norm": 3.031425714492798, + "grad_norm_var": 0.15453029560278514, + "learning_rate": 0.0001, + "loss": 246.3331, + "loss/crossentropy": 2.641087532043457, + "loss/hidden": 0.0, + "loss/logits": 0.1917201280593872, + "loss/reg": 243.5002899169922, + "step": 231 + }, + { + "epoch": 0.0058, + "grad_norm": 2.781378984451294, + "grad_norm_var": 0.1448915546965355, + "learning_rate": 0.0001, + "loss": 245.8157, + "loss/crossentropy": 2.7308170795440674, + "loss/hidden": 0.0, + "loss/logits": 0.178788423538208, + "loss/reg": 242.90609741210938, + "step": 232 + }, + { + "epoch": 0.005825, + "grad_norm": 2.6632707118988037, + "grad_norm_var": 0.13884268173051903, + "learning_rate": 0.0001, + "loss": 245.2104, + "loss/crossentropy": 2.7034757137298584, + "loss/hidden": 0.0, + "loss/logits": 0.19913603365421295, + "loss/reg": 242.30780029296875, + "step": 233 + }, + { + "epoch": 0.00585, + "grad_norm": 2.6279611587524414, + "grad_norm_var": 0.14059426093737837, + "learning_rate": 0.0001, + "loss": 244.448, + "loss/crossentropy": 2.5541391372680664, + "loss/hidden": 0.0, + "loss/logits": 0.1769060492515564, + "loss/reg": 241.71693420410156, + "step": 234 + }, + { + "epoch": 0.005875, + "grad_norm": 2.669217586517334, + "grad_norm_var": 0.13587813046198485, + "learning_rate": 0.0001, + "loss": 243.9826, + "loss/crossentropy": 2.677557945251465, + "loss/hidden": 0.0, + "loss/logits": 0.1696961522102356, + "loss/reg": 241.13534545898438, + "step": 235 + }, + { + "epoch": 0.0059, + "grad_norm": 4.654603958129883, + "grad_norm_var": 0.34211473789542096, + "learning_rate": 0.0001, + "loss": 243.4455, + "loss/crossentropy": 2.6129984855651855, + "loss/hidden": 0.0, + "loss/logits": 0.24794022738933563, + "loss/reg": 240.58453369140625, + "step": 236 + }, + { + "epoch": 0.005925, + "grad_norm": 2.7966091632843018, + "grad_norm_var": 0.32904384319109853, + "learning_rate": 0.0001, + "loss": 243.0811, + "loss/crossentropy": 2.8610379695892334, + "loss/hidden": 0.0, + "loss/logits": 0.18956679105758667, + "loss/reg": 240.03045654296875, + "step": 237 + }, + { + "epoch": 0.00595, + "grad_norm": 2.4518496990203857, + "grad_norm_var": 0.3418803558489948, + "learning_rate": 0.0001, + "loss": 242.0064, + "loss/crossentropy": 2.412545680999756, + "loss/hidden": 0.0, + "loss/logits": 0.14585809409618378, + "loss/reg": 239.44796752929688, + "step": 238 + }, + { + "epoch": 0.005975, + "grad_norm": 14.31179141998291, + "grad_norm_var": 8.399062121815462, + "learning_rate": 0.0001, + "loss": 241.8318, + "loss/crossentropy": 2.7919762134552, + "loss/hidden": 0.0, + "loss/logits": 0.17732976377010345, + "loss/reg": 238.86245727539062, + "step": 239 + }, + { + "epoch": 0.006, + "grad_norm": 2.6747586727142334, + "grad_norm_var": 8.410206107231419, + "learning_rate": 0.0001, + "loss": 241.3024, + "loss/crossentropy": 2.8322153091430664, + "loss/hidden": 0.0, + "loss/logits": 0.19286081194877625, + "loss/reg": 238.27737426757812, + "step": 240 + }, + { + "epoch": 0.006025, + "grad_norm": 2.5404036045074463, + "grad_norm_var": 8.421998600034392, + "learning_rate": 0.0001, + "loss": 240.354, + "loss/crossentropy": 2.509608507156372, + "loss/hidden": 0.0, + "loss/logits": 0.15739041566848755, + "loss/reg": 237.68695068359375, + "step": 241 + }, + { + "epoch": 0.00605, + "grad_norm": 2.88310170173645, + "grad_norm_var": 8.408739063367712, + "learning_rate": 0.0001, + "loss": 239.9893, + "loss/crossentropy": 2.714906692504883, + "loss/hidden": 0.0, + "loss/logits": 0.17041458189487457, + "loss/reg": 237.10398864746094, + "step": 242 + }, + { + "epoch": 0.006075, + "grad_norm": 2.5657036304473877, + "grad_norm_var": 8.465489057845808, + "learning_rate": 0.0001, + "loss": 239.4222, + "loss/crossentropy": 2.726501226425171, + "loss/hidden": 0.0, + "loss/logits": 0.17326998710632324, + "loss/reg": 236.5224151611328, + "step": 243 + }, + { + "epoch": 0.0061, + "grad_norm": 3.74009370803833, + "grad_norm_var": 8.41895240057901, + "learning_rate": 0.0001, + "loss": 238.9056, + "loss/crossentropy": 2.748196840286255, + "loss/hidden": 0.0, + "loss/logits": 0.21651685237884521, + "loss/reg": 235.94091796875, + "step": 244 + }, + { + "epoch": 0.006125, + "grad_norm": 2.7053475379943848, + "grad_norm_var": 8.444126473060866, + "learning_rate": 0.0001, + "loss": 238.032, + "loss/crossentropy": 2.4857230186462402, + "loss/hidden": 0.0, + "loss/logits": 0.1798083782196045, + "loss/reg": 235.36642456054688, + "step": 245 + }, + { + "epoch": 0.00615, + "grad_norm": 3.132035255432129, + "grad_norm_var": 8.405148171874606, + "learning_rate": 0.0001, + "loss": 237.9786, + "loss/crossentropy": 2.9837818145751953, + "loss/hidden": 0.0, + "loss/logits": 0.2059348225593567, + "loss/reg": 234.78887939453125, + "step": 246 + }, + { + "epoch": 0.006175, + "grad_norm": 2.4898736476898193, + "grad_norm_var": 8.467374226379958, + "learning_rate": 0.0001, + "loss": 237.2757, + "loss/crossentropy": 2.880187749862671, + "loss/hidden": 0.0, + "loss/logits": 0.17742741107940674, + "loss/reg": 234.21804809570312, + "step": 247 + }, + { + "epoch": 0.0062, + "grad_norm": 2.655679702758789, + "grad_norm_var": 8.482173935471064, + "learning_rate": 0.0001, + "loss": 236.6548, + "loss/crossentropy": 2.8338496685028076, + "loss/hidden": 0.0, + "loss/logits": 0.1855936199426651, + "loss/reg": 233.63536071777344, + "step": 248 + }, + { + "epoch": 0.006225, + "grad_norm": 2.869889259338379, + "grad_norm_var": 8.459100961664873, + "learning_rate": 0.0001, + "loss": 236.2722, + "loss/crossentropy": 3.00722074508667, + "loss/hidden": 0.0, + "loss/logits": 0.19864147901535034, + "loss/reg": 233.06637573242188, + "step": 249 + }, + { + "epoch": 0.00625, + "grad_norm": 2.8619699478149414, + "grad_norm_var": 8.431865311995418, + "learning_rate": 0.0001, + "loss": 235.1938, + "loss/crossentropy": 2.527130365371704, + "loss/hidden": 0.0, + "loss/logits": 0.18343941867351532, + "loss/reg": 232.48324584960938, + "step": 250 + }, + { + "epoch": 0.006275, + "grad_norm": 2.570348024368286, + "grad_norm_var": 8.445078379379984, + "learning_rate": 0.0001, + "loss": 234.9153, + "loss/crossentropy": 2.8627750873565674, + "loss/hidden": 0.0, + "loss/logits": 0.16326285898685455, + "loss/reg": 231.88925170898438, + "step": 251 + }, + { + "epoch": 0.0063, + "grad_norm": 3.70983624458313, + "grad_norm_var": 8.370411445912024, + "learning_rate": 0.0001, + "loss": 234.453, + "loss/crossentropy": 2.9494543075561523, + "loss/hidden": 0.0, + "loss/logits": 0.1932690143585205, + "loss/reg": 231.31028747558594, + "step": 252 + }, + { + "epoch": 0.006325, + "grad_norm": 2.636204957962036, + "grad_norm_var": 8.38834540620384, + "learning_rate": 0.0001, + "loss": 233.79, + "loss/crossentropy": 2.870368003845215, + "loss/hidden": 0.0, + "loss/logits": 0.18195605278015137, + "loss/reg": 230.73770141601562, + "step": 253 + }, + { + "epoch": 0.00635, + "grad_norm": 2.7411065101623535, + "grad_norm_var": 8.35122443905512, + "learning_rate": 0.0001, + "loss": 233.4192, + "loss/crossentropy": 3.0693013668060303, + "loss/hidden": 0.0, + "loss/logits": 0.17932993173599243, + "loss/reg": 230.17056274414062, + "step": 254 + }, + { + "epoch": 0.006375, + "grad_norm": 2.631800889968872, + "grad_norm_var": 0.1459736729753594, + "learning_rate": 0.0001, + "loss": 232.6018, + "loss/crossentropy": 2.812204360961914, + "loss/hidden": 0.0, + "loss/logits": 0.1809658408164978, + "loss/reg": 229.60862731933594, + "step": 255 + }, + { + "epoch": 0.0064, + "grad_norm": 2.6473164558410645, + "grad_norm_var": 0.14661806909008704, + "learning_rate": 0.0001, + "loss": 232.0037, + "loss/crossentropy": 2.8154137134552, + "loss/hidden": 0.0, + "loss/logits": 0.16016216576099396, + "loss/reg": 229.02810668945312, + "step": 256 + }, + { + "epoch": 0.006425, + "grad_norm": 2.8096730709075928, + "grad_norm_var": 0.14052644786456767, + "learning_rate": 0.0001, + "loss": 231.4434, + "loss/crossentropy": 2.8410181999206543, + "loss/hidden": 0.0, + "loss/logits": 0.15286508202552795, + "loss/reg": 228.4495391845703, + "step": 257 + }, + { + "epoch": 0.00645, + "grad_norm": 2.902038335800171, + "grad_norm_var": 0.14062455090234588, + "learning_rate": 0.0001, + "loss": 230.797, + "loss/crossentropy": 2.71943998336792, + "loss/hidden": 0.0, + "loss/logits": 0.1998460292816162, + "loss/reg": 227.87771606445312, + "step": 258 + }, + { + "epoch": 0.006475, + "grad_norm": 2.605620861053467, + "grad_norm_var": 0.1391881027932695, + "learning_rate": 0.0001, + "loss": 230.5228, + "loss/crossentropy": 3.017008066177368, + "loss/hidden": 0.0, + "loss/logits": 0.18362455070018768, + "loss/reg": 227.32220458984375, + "step": 259 + }, + { + "epoch": 0.0065, + "grad_norm": 3.0760796070098877, + "grad_norm_var": 0.08854286659723035, + "learning_rate": 0.0001, + "loss": 229.5804, + "loss/crossentropy": 2.6169934272766113, + "loss/hidden": 0.0, + "loss/logits": 0.20932170748710632, + "loss/reg": 226.75404357910156, + "step": 260 + }, + { + "epoch": 0.006525, + "grad_norm": 2.7260305881500244, + "grad_norm_var": 0.08826637957723141, + "learning_rate": 0.0001, + "loss": 229.1744, + "loss/crossentropy": 2.800166368484497, + "loss/hidden": 0.0, + "loss/logits": 0.16581743955612183, + "loss/reg": 226.20838928222656, + "step": 261 + }, + { + "epoch": 0.00655, + "grad_norm": 2.520145893096924, + "grad_norm_var": 0.08593156013952026, + "learning_rate": 0.0001, + "loss": 228.4811, + "loss/crossentropy": 2.66050124168396, + "loss/hidden": 0.0, + "loss/logits": 0.17131495475769043, + "loss/reg": 225.64930725097656, + "step": 262 + }, + { + "epoch": 0.006575, + "grad_norm": 2.666048288345337, + "grad_norm_var": 0.08109508789745874, + "learning_rate": 0.0001, + "loss": 228.21, + "loss/crossentropy": 2.948183298110962, + "loss/hidden": 0.0, + "loss/logits": 0.1878964900970459, + "loss/reg": 225.0739288330078, + "step": 263 + }, + { + "epoch": 0.0066, + "grad_norm": 2.762319326400757, + "grad_norm_var": 0.07990506415366098, + "learning_rate": 0.0001, + "loss": 227.5642, + "loss/crossentropy": 2.8666961193084717, + "loss/hidden": 0.0, + "loss/logits": 0.19062572717666626, + "loss/reg": 224.5068817138672, + "step": 264 + }, + { + "epoch": 0.006625, + "grad_norm": 3.026460647583008, + "grad_norm_var": 0.08297919370627369, + "learning_rate": 0.0001, + "loss": 227.1483, + "loss/crossentropy": 3.004094362258911, + "loss/hidden": 0.0, + "loss/logits": 0.1900184154510498, + "loss/reg": 223.9541473388672, + "step": 265 + }, + { + "epoch": 0.00665, + "grad_norm": 2.7408447265625, + "grad_norm_var": 0.08298920636462223, + "learning_rate": 0.0001, + "loss": 226.3396, + "loss/crossentropy": 2.745393753051758, + "loss/hidden": 0.0, + "loss/logits": 0.20416490733623505, + "loss/reg": 223.39002990722656, + "step": 266 + }, + { + "epoch": 0.006675, + "grad_norm": 2.686131238937378, + "grad_norm_var": 0.0803088906266936, + "learning_rate": 0.0001, + "loss": 225.7382, + "loss/crossentropy": 2.730952262878418, + "loss/hidden": 0.0, + "loss/logits": 0.19333088397979736, + "loss/reg": 222.8138885498047, + "step": 267 + }, + { + "epoch": 0.0067, + "grad_norm": 3.0181736946105957, + "grad_norm_var": 0.026807333288596878, + "learning_rate": 0.0001, + "loss": 225.3613, + "loss/crossentropy": 2.9188590049743652, + "loss/hidden": 0.0, + "loss/logits": 0.2012787163257599, + "loss/reg": 222.24114990234375, + "step": 268 + }, + { + "epoch": 0.006725, + "grad_norm": 2.6647708415985107, + "grad_norm_var": 0.026378256663085863, + "learning_rate": 0.0001, + "loss": 224.5769, + "loss/crossentropy": 2.7387688159942627, + "loss/hidden": 0.0, + "loss/logits": 0.18105106055736542, + "loss/reg": 221.6570587158203, + "step": 269 + }, + { + "epoch": 0.00675, + "grad_norm": 3.005382776260376, + "grad_norm_var": 0.029935448640787853, + "learning_rate": 0.0001, + "loss": 223.7069, + "loss/crossentropy": 2.4513492584228516, + "loss/hidden": 0.0, + "loss/logits": 0.17486891150474548, + "loss/reg": 221.08065795898438, + "step": 270 + }, + { + "epoch": 0.006775, + "grad_norm": 2.534144163131714, + "grad_norm_var": 0.03246837804460086, + "learning_rate": 0.0001, + "loss": 223.3926, + "loss/crossentropy": 2.698563575744629, + "loss/hidden": 0.0, + "loss/logits": 0.1854040026664734, + "loss/reg": 220.50863647460938, + "step": 271 + }, + { + "epoch": 0.0068, + "grad_norm": 2.7375473976135254, + "grad_norm_var": 0.031447726867909864, + "learning_rate": 0.0001, + "loss": 223.1195, + "loss/crossentropy": 2.990828037261963, + "loss/hidden": 0.0, + "loss/logits": 0.19145527482032776, + "loss/reg": 219.937255859375, + "step": 272 + }, + { + "epoch": 0.006825, + "grad_norm": 2.594477415084839, + "grad_norm_var": 0.03349317904539077, + "learning_rate": 0.0001, + "loss": 222.1966, + "loss/crossentropy": 2.6549155712127686, + "loss/hidden": 0.0, + "loss/logits": 0.18063394725322723, + "loss/reg": 219.36102294921875, + "step": 273 + }, + { + "epoch": 0.00685, + "grad_norm": 3.0771312713623047, + "grad_norm_var": 0.03857028263729087, + "learning_rate": 0.0001, + "loss": 221.9057, + "loss/crossentropy": 2.904212713241577, + "loss/hidden": 0.0, + "loss/logits": 0.19918082654476166, + "loss/reg": 218.80227661132812, + "step": 274 + }, + { + "epoch": 0.006875, + "grad_norm": 2.548748731613159, + "grad_norm_var": 0.040076406355323495, + "learning_rate": 0.0001, + "loss": 221.1609, + "loss/crossentropy": 2.7445976734161377, + "loss/hidden": 0.0, + "loss/logits": 0.17896625399589539, + "loss/reg": 218.23736572265625, + "step": 275 + }, + { + "epoch": 0.0069, + "grad_norm": 3.4485270977020264, + "grad_norm_var": 0.0637460442930499, + "learning_rate": 0.0001, + "loss": 220.8704, + "loss/crossentropy": 2.9816956520080566, + "loss/hidden": 0.0, + "loss/logits": 0.19691282510757446, + "loss/reg": 217.6918182373047, + "step": 276 + }, + { + "epoch": 0.006925, + "grad_norm": 2.622490644454956, + "grad_norm_var": 0.06540004680390439, + "learning_rate": 0.0001, + "loss": 219.9821, + "loss/crossentropy": 2.6642203330993652, + "loss/hidden": 0.0, + "loss/logits": 0.1839863508939743, + "loss/reg": 217.13385009765625, + "step": 277 + }, + { + "epoch": 0.00695, + "grad_norm": 2.6010499000549316, + "grad_norm_var": 0.06288917084829108, + "learning_rate": 0.0001, + "loss": 219.4899, + "loss/crossentropy": 2.710230827331543, + "loss/hidden": 0.0, + "loss/logits": 0.19618386030197144, + "loss/reg": 216.58343505859375, + "step": 278 + }, + { + "epoch": 0.006975, + "grad_norm": 2.880260705947876, + "grad_norm_var": 0.06204859700921664, + "learning_rate": 0.0001, + "loss": 219.1407, + "loss/crossentropy": 2.898496150970459, + "loss/hidden": 0.0, + "loss/logits": 0.2143867015838623, + "loss/reg": 216.02783203125, + "step": 279 + }, + { + "epoch": 0.007, + "grad_norm": 3.233513593673706, + "grad_norm_var": 0.07297482892120115, + "learning_rate": 0.0001, + "loss": 218.5671, + "loss/crossentropy": 2.876899003982544, + "loss/hidden": 0.0, + "loss/logits": 0.20586279034614563, + "loss/reg": 215.48439025878906, + "step": 280 + }, + { + "epoch": 0.007025, + "grad_norm": 2.415728807449341, + "grad_norm_var": 0.08099970934078797, + "learning_rate": 0.0001, + "loss": 217.7508, + "loss/crossentropy": 2.639965057373047, + "loss/hidden": 0.0, + "loss/logits": 0.1753409504890442, + "loss/reg": 214.93548583984375, + "step": 281 + }, + { + "epoch": 0.00705, + "grad_norm": 2.7094812393188477, + "grad_norm_var": 0.08131089617161227, + "learning_rate": 0.0001, + "loss": 217.2597, + "loss/crossentropy": 2.687687873840332, + "loss/hidden": 0.0, + "loss/logits": 0.18249084055423737, + "loss/reg": 214.38949584960938, + "step": 282 + }, + { + "epoch": 0.007075, + "grad_norm": 2.616089105606079, + "grad_norm_var": 0.08266783158203429, + "learning_rate": 0.0001, + "loss": 216.6144, + "loss/crossentropy": 2.6135380268096924, + "loss/hidden": 0.0, + "loss/logits": 0.1692454218864441, + "loss/reg": 213.83157348632812, + "step": 283 + }, + { + "epoch": 0.0071, + "grad_norm": 2.598839521408081, + "grad_norm_var": 0.08113636926467128, + "learning_rate": 0.0001, + "loss": 216.4407, + "loss/crossentropy": 2.969308853149414, + "loss/hidden": 0.0, + "loss/logits": 0.18686597049236298, + "loss/reg": 213.28448486328125, + "step": 284 + }, + { + "epoch": 0.007125, + "grad_norm": 2.68222713470459, + "grad_norm_var": 0.0809151212890202, + "learning_rate": 0.0001, + "loss": 215.8076, + "loss/crossentropy": 2.8860280513763428, + "loss/hidden": 0.0, + "loss/logits": 0.17992877960205078, + "loss/reg": 212.74166870117188, + "step": 285 + }, + { + "epoch": 0.00715, + "grad_norm": 2.798988103866577, + "grad_norm_var": 0.07707527762625711, + "learning_rate": 0.0001, + "loss": 215.3757, + "loss/crossentropy": 2.9692792892456055, + "loss/hidden": 0.0, + "loss/logits": 0.21567609906196594, + "loss/reg": 212.19068908691406, + "step": 286 + }, + { + "epoch": 0.007175, + "grad_norm": 2.5780839920043945, + "grad_norm_var": 0.07589498443210232, + "learning_rate": 0.0001, + "loss": 214.3753, + "loss/crossentropy": 2.5596561431884766, + "loss/hidden": 0.0, + "loss/logits": 0.177793949842453, + "loss/reg": 211.63784790039062, + "step": 287 + }, + { + "epoch": 0.0072, + "grad_norm": 2.6318469047546387, + "grad_norm_var": 0.07689489347470727, + "learning_rate": 0.0001, + "loss": 214.0618, + "loss/crossentropy": 2.7902228832244873, + "loss/hidden": 0.0, + "loss/logits": 0.18190298974514008, + "loss/reg": 211.0896759033203, + "step": 288 + }, + { + "epoch": 0.007225, + "grad_norm": 3.0802104473114014, + "grad_norm_var": 0.08141687457795115, + "learning_rate": 0.0001, + "loss": 213.4452, + "loss/crossentropy": 2.7214579582214355, + "loss/hidden": 0.0, + "loss/logits": 0.18961231410503387, + "loss/reg": 210.5341796875, + "step": 289 + }, + { + "epoch": 0.00725, + "grad_norm": 3.087554693222046, + "grad_norm_var": 0.08183286107987228, + "learning_rate": 0.0001, + "loss": 213.064, + "loss/crossentropy": 2.886679172515869, + "loss/hidden": 0.0, + "loss/logits": 0.17951728403568268, + "loss/reg": 209.9978485107422, + "step": 290 + }, + { + "epoch": 0.007275, + "grad_norm": 2.7192165851593018, + "grad_norm_var": 0.07831674565225223, + "learning_rate": 0.0001, + "loss": 212.4935, + "loss/crossentropy": 2.835261821746826, + "loss/hidden": 0.0, + "loss/logits": 0.19229570031166077, + "loss/reg": 209.4658966064453, + "step": 291 + }, + { + "epoch": 0.0073, + "grad_norm": 2.9835152626037598, + "grad_norm_var": 0.051250203523905684, + "learning_rate": 0.0001, + "loss": 211.8015, + "loss/crossentropy": 2.691941499710083, + "loss/hidden": 0.0, + "loss/logits": 0.18396204710006714, + "loss/reg": 208.92559814453125, + "step": 292 + }, + { + "epoch": 0.007325, + "grad_norm": 3.2173898220062256, + "grad_norm_var": 0.062069919928694615, + "learning_rate": 0.0001, + "loss": 211.2997, + "loss/crossentropy": 2.6862618923187256, + "loss/hidden": 0.0, + "loss/logits": 0.22537732124328613, + "loss/reg": 208.3881072998047, + "step": 293 + }, + { + "epoch": 0.00735, + "grad_norm": 3.5398621559143066, + "grad_norm_var": 0.09198591178203515, + "learning_rate": 0.0001, + "loss": 210.6651, + "loss/crossentropy": 2.612825393676758, + "loss/hidden": 0.0, + "loss/logits": 0.19290409982204437, + "loss/reg": 207.85940551757812, + "step": 294 + }, + { + "epoch": 0.007375, + "grad_norm": 2.561976671218872, + "grad_norm_var": 0.09749160768811103, + "learning_rate": 0.0001, + "loss": 210.1769, + "loss/crossentropy": 2.6648244857788086, + "loss/hidden": 0.0, + "loss/logits": 0.20216211676597595, + "loss/reg": 207.30992126464844, + "step": 295 + }, + { + "epoch": 0.0074, + "grad_norm": 7.271378040313721, + "grad_norm_var": 1.3278853272864029, + "learning_rate": 0.0001, + "loss": 209.9314, + "loss/crossentropy": 2.9801483154296875, + "loss/hidden": 0.0, + "loss/logits": 0.19208793342113495, + "loss/reg": 206.75917053222656, + "step": 296 + }, + { + "epoch": 0.007425, + "grad_norm": 3.091381788253784, + "grad_norm_var": 1.295378929230882, + "learning_rate": 0.0001, + "loss": 209.1877, + "loss/crossentropy": 2.7932381629943848, + "loss/hidden": 0.0, + "loss/logits": 0.18018564581871033, + "loss/reg": 206.21424865722656, + "step": 297 + }, + { + "epoch": 0.00745, + "grad_norm": 2.8066790103912354, + "grad_norm_var": 1.2904482820319183, + "learning_rate": 0.0001, + "loss": 208.8806, + "loss/crossentropy": 3.017073392868042, + "loss/hidden": 0.0, + "loss/logits": 0.19379809498786926, + "loss/reg": 205.66973876953125, + "step": 298 + }, + { + "epoch": 0.007475, + "grad_norm": 2.856220006942749, + "grad_norm_var": 1.2772274114279487, + "learning_rate": 0.0001, + "loss": 208.1113, + "loss/crossentropy": 2.81599497795105, + "loss/hidden": 0.0, + "loss/logits": 0.18530045449733734, + "loss/reg": 205.11001586914062, + "step": 299 + }, + { + "epoch": 0.0075, + "grad_norm": 2.9903173446655273, + "grad_norm_var": 1.2576931439437788, + "learning_rate": 0.0001, + "loss": 207.5814, + "loss/crossentropy": 2.826772451400757, + "loss/hidden": 0.0, + "loss/logits": 0.19662591814994812, + "loss/reg": 204.55799865722656, + "step": 300 + }, + { + "epoch": 0.007525, + "grad_norm": 2.5510308742523193, + "grad_norm_var": 1.2674948009951321, + "learning_rate": 0.0001, + "loss": 206.9224, + "loss/crossentropy": 2.712320327758789, + "loss/hidden": 0.0, + "loss/logits": 0.19106364250183105, + "loss/reg": 204.01902770996094, + "step": 301 + }, + { + "epoch": 0.00755, + "grad_norm": 2.508366107940674, + "grad_norm_var": 1.2872607464713248, + "learning_rate": 0.0001, + "loss": 206.1158, + "loss/crossentropy": 2.4741883277893066, + "loss/hidden": 0.0, + "loss/logits": 0.17461839318275452, + "loss/reg": 203.46702575683594, + "step": 302 + }, + { + "epoch": 0.007575, + "grad_norm": 2.976346969604492, + "grad_norm_var": 1.266555341337554, + "learning_rate": 0.0001, + "loss": 205.8845, + "loss/crossentropy": 2.732536554336548, + "loss/hidden": 0.0, + "loss/logits": 0.2265537679195404, + "loss/reg": 202.92544555664062, + "step": 303 + }, + { + "epoch": 0.0076, + "grad_norm": 2.8182311058044434, + "grad_norm_var": 1.2551146741564971, + "learning_rate": 0.0001, + "loss": 205.3437, + "loss/crossentropy": 2.774559736251831, + "loss/hidden": 0.0, + "loss/logits": 0.19560466706752777, + "loss/reg": 202.37356567382812, + "step": 304 + }, + { + "epoch": 0.007625, + "grad_norm": 2.6641106605529785, + "grad_norm_var": 1.2720952145177449, + "learning_rate": 0.0001, + "loss": 204.813, + "loss/crossentropy": 2.7902915477752686, + "loss/hidden": 0.0, + "loss/logits": 0.18885600566864014, + "loss/reg": 201.83387756347656, + "step": 305 + }, + { + "epoch": 0.00765, + "grad_norm": 2.7573277950286865, + "grad_norm_var": 1.2823306075296226, + "learning_rate": 0.0001, + "loss": 204.3929, + "loss/crossentropy": 2.89617919921875, + "loss/hidden": 0.0, + "loss/logits": 0.20617598295211792, + "loss/reg": 201.29051208496094, + "step": 306 + }, + { + "epoch": 0.007675, + "grad_norm": 2.9883832931518555, + "grad_norm_var": 1.2715927971824363, + "learning_rate": 0.0001, + "loss": 203.6661, + "loss/crossentropy": 2.736328363418579, + "loss/hidden": 0.0, + "loss/logits": 0.17194727063179016, + "loss/reg": 200.75784301757812, + "step": 307 + }, + { + "epoch": 0.0077, + "grad_norm": 2.671340227127075, + "grad_norm_var": 1.2850880861748617, + "learning_rate": 0.0001, + "loss": 203.2853, + "loss/crossentropy": 2.837782859802246, + "loss/hidden": 0.0, + "loss/logits": 0.20544278621673584, + "loss/reg": 200.2420654296875, + "step": 308 + }, + { + "epoch": 0.007725, + "grad_norm": 2.5738258361816406, + "grad_norm_var": 1.304496016414119, + "learning_rate": 0.0001, + "loss": 202.6491, + "loss/crossentropy": 2.764209270477295, + "loss/hidden": 0.0, + "loss/logits": 0.17526961863040924, + "loss/reg": 199.7096710205078, + "step": 309 + }, + { + "epoch": 0.00775, + "grad_norm": 2.727646827697754, + "grad_norm_var": 1.2982730821691781, + "learning_rate": 0.0001, + "loss": 201.8776, + "loss/crossentropy": 2.507113456726074, + "loss/hidden": 0.0, + "loss/logits": 0.18204720318317413, + "loss/reg": 199.1884765625, + "step": 310 + }, + { + "epoch": 0.007775, + "grad_norm": 3.019986629486084, + "grad_norm_var": 1.2815257147172248, + "learning_rate": 0.0001, + "loss": 201.4175, + "loss/crossentropy": 2.580369234085083, + "loss/hidden": 0.0, + "loss/logits": 0.18372410535812378, + "loss/reg": 198.6533660888672, + "step": 311 + }, + { + "epoch": 0.0078, + "grad_norm": 4.663088321685791, + "grad_norm_var": 0.24891895975728176, + "learning_rate": 0.0001, + "loss": 201.1794, + "loss/crossentropy": 2.814059019088745, + "loss/hidden": 0.0, + "loss/logits": 0.23769119381904602, + "loss/reg": 198.1276092529297, + "step": 312 + }, + { + "epoch": 0.007825, + "grad_norm": 2.9102060794830322, + "grad_norm_var": 0.24674634897498038, + "learning_rate": 0.0001, + "loss": 200.4867, + "loss/crossentropy": 2.6932103633880615, + "loss/hidden": 0.0, + "loss/logits": 0.1972815990447998, + "loss/reg": 197.5962371826172, + "step": 313 + }, + { + "epoch": 0.00785, + "grad_norm": 2.906273603439331, + "grad_norm_var": 0.24605808105580232, + "learning_rate": 0.0001, + "loss": 200.3487, + "loss/crossentropy": 3.0405361652374268, + "loss/hidden": 0.0, + "loss/logits": 0.22804442048072815, + "loss/reg": 197.0801544189453, + "step": 314 + }, + { + "epoch": 0.007875, + "grad_norm": 2.5689239501953125, + "grad_norm_var": 0.2533312249281851, + "learning_rate": 0.0001, + "loss": 199.4335, + "loss/crossentropy": 2.7003679275512695, + "loss/hidden": 0.0, + "loss/logits": 0.1923004686832428, + "loss/reg": 196.54086303710938, + "step": 315 + }, + { + "epoch": 0.0079, + "grad_norm": 2.8070003986358643, + "grad_norm_var": 0.2530642011976994, + "learning_rate": 0.0001, + "loss": 199.2196, + "loss/crossentropy": 3.0146713256835938, + "loss/hidden": 0.0, + "loss/logits": 0.1969759613275528, + "loss/reg": 196.0079803466797, + "step": 316 + }, + { + "epoch": 0.007925, + "grad_norm": 2.6455047130584717, + "grad_norm_var": 0.2494529065085686, + "learning_rate": 0.0001, + "loss": 198.6955, + "loss/crossentropy": 3.0136356353759766, + "loss/hidden": 0.0, + "loss/logits": 0.20378613471984863, + "loss/reg": 195.4780731201172, + "step": 317 + }, + { + "epoch": 0.00795, + "grad_norm": 2.6797735691070557, + "grad_norm_var": 0.2426149646107582, + "learning_rate": 0.0001, + "loss": 197.5625, + "loss/crossentropy": 2.4390504360198975, + "loss/hidden": 0.0, + "loss/logits": 0.17309829592704773, + "loss/reg": 194.95030212402344, + "step": 318 + }, + { + "epoch": 0.007975, + "grad_norm": 2.668614149093628, + "grad_norm_var": 0.2453445922218293, + "learning_rate": 0.0001, + "loss": 197.1961, + "loss/crossentropy": 2.5966238975524902, + "loss/hidden": 0.0, + "loss/logits": 0.1794152557849884, + "loss/reg": 194.42005920410156, + "step": 319 + }, + { + "epoch": 0.008, + "grad_norm": 2.552947521209717, + "grad_norm_var": 0.2519063072997559, + "learning_rate": 0.0001, + "loss": 196.5726, + "loss/crossentropy": 2.5113775730133057, + "loss/hidden": 0.0, + "loss/logits": 0.16936884820461273, + "loss/reg": 193.891845703125, + "step": 320 + }, + { + "epoch": 0.008025, + "grad_norm": 2.836556911468506, + "grad_norm_var": 0.2491962625539448, + "learning_rate": 0.0001, + "loss": 196.1308, + "loss/crossentropy": 2.5704989433288574, + "loss/hidden": 0.0, + "loss/logits": 0.19436271488666534, + "loss/reg": 193.3658905029297, + "step": 321 + }, + { + "epoch": 0.00805, + "grad_norm": 2.6601991653442383, + "grad_norm_var": 0.25129150502635655, + "learning_rate": 0.0001, + "loss": 196.0067, + "loss/crossentropy": 2.9537734985351562, + "loss/hidden": 0.0, + "loss/logits": 0.21296489238739014, + "loss/reg": 192.83993530273438, + "step": 322 + }, + { + "epoch": 0.008075, + "grad_norm": 2.7744781970977783, + "grad_norm_var": 0.25070402667003294, + "learning_rate": 0.0001, + "loss": 195.5274, + "loss/crossentropy": 3.016360282897949, + "loss/hidden": 0.0, + "loss/logits": 0.19973087310791016, + "loss/reg": 192.3113250732422, + "step": 323 + }, + { + "epoch": 0.0081, + "grad_norm": 3.1214191913604736, + "grad_norm_var": 0.252394334847159, + "learning_rate": 0.0001, + "loss": 195.3513, + "loss/crossentropy": 3.329318046569824, + "loss/hidden": 0.0, + "loss/logits": 0.23599132895469666, + "loss/reg": 191.78594970703125, + "step": 324 + }, + { + "epoch": 0.008125, + "grad_norm": 2.6547012329101562, + "grad_norm_var": 0.2494769798717158, + "learning_rate": 0.0001, + "loss": 194.3078, + "loss/crossentropy": 2.844395399093628, + "loss/hidden": 0.0, + "loss/logits": 0.20515291392803192, + "loss/reg": 191.2582550048828, + "step": 325 + }, + { + "epoch": 0.00815, + "grad_norm": 2.800093650817871, + "grad_norm_var": 0.24826251752535028, + "learning_rate": 0.0001, + "loss": 193.7962, + "loss/crossentropy": 2.856586217880249, + "loss/hidden": 0.0, + "loss/logits": 0.1940813660621643, + "loss/reg": 190.74557495117188, + "step": 326 + }, + { + "epoch": 0.008175, + "grad_norm": 2.558241844177246, + "grad_norm_var": 0.2536998205740133, + "learning_rate": 0.0001, + "loss": 192.9891, + "loss/crossentropy": 2.562021493911743, + "loss/hidden": 0.0, + "loss/logits": 0.18647362291812897, + "loss/reg": 190.24061584472656, + "step": 327 + }, + { + "epoch": 0.0082, + "grad_norm": 2.952324390411377, + "grad_norm_var": 0.026016228267095206, + "learning_rate": 0.0001, + "loss": 192.9934, + "loss/crossentropy": 3.0561769008636475, + "loss/hidden": 0.0, + "loss/logits": 0.20818649232387543, + "loss/reg": 189.72903442382812, + "step": 328 + }, + { + "epoch": 0.008225, + "grad_norm": 3.3000900745391846, + "grad_norm_var": 0.043529065715877856, + "learning_rate": 0.0001, + "loss": 192.3072, + "loss/crossentropy": 2.8769357204437256, + "loss/hidden": 0.0, + "loss/logits": 0.21247068047523499, + "loss/reg": 189.21775817871094, + "step": 329 + }, + { + "epoch": 0.00825, + "grad_norm": 2.693880081176758, + "grad_norm_var": 0.04278518629817896, + "learning_rate": 0.0001, + "loss": 191.9053, + "loss/crossentropy": 2.990717649459839, + "loss/hidden": 0.0, + "loss/logits": 0.20985952019691467, + "loss/reg": 188.7047119140625, + "step": 330 + }, + { + "epoch": 0.008275, + "grad_norm": 2.718574285507202, + "grad_norm_var": 0.04022917313372621, + "learning_rate": 0.0001, + "loss": 191.1251, + "loss/crossentropy": 2.72544527053833, + "loss/hidden": 0.0, + "loss/logits": 0.18823279440402985, + "loss/reg": 188.21141052246094, + "step": 331 + }, + { + "epoch": 0.0083, + "grad_norm": 2.4027438163757324, + "grad_norm_var": 0.04880048181735764, + "learning_rate": 0.0001, + "loss": 190.5635, + "loss/crossentropy": 2.6736438274383545, + "loss/hidden": 0.0, + "loss/logits": 0.16881534457206726, + "loss/reg": 187.72108459472656, + "step": 332 + }, + { + "epoch": 0.008325, + "grad_norm": 4.033091068267822, + "grad_norm_var": 0.14957197834728883, + "learning_rate": 0.0001, + "loss": 190.4425, + "loss/crossentropy": 2.9758944511413574, + "loss/hidden": 0.0, + "loss/logits": 0.23931945860385895, + "loss/reg": 187.22726440429688, + "step": 333 + }, + { + "epoch": 0.00835, + "grad_norm": 2.87990140914917, + "grad_norm_var": 0.14785355856326585, + "learning_rate": 0.0001, + "loss": 189.6929, + "loss/crossentropy": 2.762582302093506, + "loss/hidden": 0.0, + "loss/logits": 0.1953504979610443, + "loss/reg": 186.7349853515625, + "step": 334 + }, + { + "epoch": 0.008375, + "grad_norm": 2.569755792617798, + "grad_norm_var": 0.15086170983481276, + "learning_rate": 0.0001, + "loss": 189.2558, + "loss/crossentropy": 2.8176991939544678, + "loss/hidden": 0.0, + "loss/logits": 0.2055705040693283, + "loss/reg": 186.23252868652344, + "step": 335 + }, + { + "epoch": 0.0084, + "grad_norm": 2.7810733318328857, + "grad_norm_var": 0.14525191609682603, + "learning_rate": 0.0001, + "loss": 188.7248, + "loss/crossentropy": 2.7931947708129883, + "loss/hidden": 0.0, + "loss/logits": 0.20690809190273285, + "loss/reg": 185.72470092773438, + "step": 336 + }, + { + "epoch": 0.008425, + "grad_norm": 2.921773910522461, + "grad_norm_var": 0.1454556654203382, + "learning_rate": 0.0001, + "loss": 188.15, + "loss/crossentropy": 2.723609447479248, + "loss/hidden": 0.0, + "loss/logits": 0.2181951254606247, + "loss/reg": 185.20816040039062, + "step": 337 + }, + { + "epoch": 0.00845, + "grad_norm": 3.092437505722046, + "grad_norm_var": 0.14539310884848244, + "learning_rate": 0.0001, + "loss": 187.8704, + "loss/crossentropy": 2.962968111038208, + "loss/hidden": 0.0, + "loss/logits": 0.2084237039089203, + "loss/reg": 184.69903564453125, + "step": 338 + }, + { + "epoch": 0.008475, + "grad_norm": 3.1183600425720215, + "grad_norm_var": 0.14744546795223623, + "learning_rate": 0.0001, + "loss": 187.327, + "loss/crossentropy": 2.9327218532562256, + "loss/hidden": 0.0, + "loss/logits": 0.21510222554206848, + "loss/reg": 184.17919921875, + "step": 339 + }, + { + "epoch": 0.0085, + "grad_norm": 3.118776559829712, + "grad_norm_var": 0.14737225768415765, + "learning_rate": 0.0001, + "loss": 186.937, + "loss/crossentropy": 3.054023265838623, + "loss/hidden": 0.0, + "loss/logits": 0.21871572732925415, + "loss/reg": 183.66429138183594, + "step": 340 + }, + { + "epoch": 0.008525, + "grad_norm": 3.009570360183716, + "grad_norm_var": 0.14305740155455335, + "learning_rate": 0.0001, + "loss": 186.0073, + "loss/crossentropy": 2.6760642528533936, + "loss/hidden": 0.0, + "loss/logits": 0.1764220893383026, + "loss/reg": 183.15478515625, + "step": 341 + }, + { + "epoch": 0.00855, + "grad_norm": 2.6750733852386475, + "grad_norm_var": 0.14627338296657608, + "learning_rate": 0.0001, + "loss": 185.687, + "loss/crossentropy": 2.8624348640441895, + "loss/hidden": 0.0, + "loss/logits": 0.1818752884864807, + "loss/reg": 182.64266967773438, + "step": 342 + }, + { + "epoch": 0.008575, + "grad_norm": 2.536036252975464, + "grad_norm_var": 0.14739482829090184, + "learning_rate": 0.0001, + "loss": 185.0605, + "loss/crossentropy": 2.755174398422241, + "loss/hidden": 0.0, + "loss/logits": 0.1642666757106781, + "loss/reg": 182.1410369873047, + "step": 343 + }, + { + "epoch": 0.0086, + "grad_norm": 2.7478532791137695, + "grad_norm_var": 0.14926881515059046, + "learning_rate": 0.0001, + "loss": 184.4167, + "loss/crossentropy": 2.5819690227508545, + "loss/hidden": 0.0, + "loss/logits": 0.19197826087474823, + "loss/reg": 181.64279174804688, + "step": 344 + }, + { + "epoch": 0.008625, + "grad_norm": 2.914630651473999, + "grad_norm_var": 0.1386317271370025, + "learning_rate": 0.0001, + "loss": 184.1337, + "loss/crossentropy": 2.7838339805603027, + "loss/hidden": 0.0, + "loss/logits": 0.19958782196044922, + "loss/reg": 181.15025329589844, + "step": 345 + }, + { + "epoch": 0.00865, + "grad_norm": 2.6812732219696045, + "grad_norm_var": 0.13896854058942837, + "learning_rate": 0.0001, + "loss": 183.8571, + "loss/crossentropy": 3.0270869731903076, + "loss/hidden": 0.0, + "loss/logits": 0.17617946863174438, + "loss/reg": 180.65380859375, + "step": 346 + }, + { + "epoch": 0.008675, + "grad_norm": 2.7997968196868896, + "grad_norm_var": 0.13755082338921434, + "learning_rate": 0.0001, + "loss": 183.1842, + "loss/crossentropy": 2.830026865005493, + "loss/hidden": 0.0, + "loss/logits": 0.2012362778186798, + "loss/reg": 180.15289306640625, + "step": 347 + }, + { + "epoch": 0.0087, + "grad_norm": 2.632431745529175, + "grad_norm_var": 0.1258451860116639, + "learning_rate": 0.0001, + "loss": 182.56, + "loss/crossentropy": 2.704882860183716, + "loss/hidden": 0.0, + "loss/logits": 0.1936817169189453, + "loss/reg": 179.66139221191406, + "step": 348 + }, + { + "epoch": 0.008725, + "grad_norm": 2.971341371536255, + "grad_norm_var": 0.036883841878242646, + "learning_rate": 0.0001, + "loss": 182.6145, + "loss/crossentropy": 3.2539191246032715, + "loss/hidden": 0.0, + "loss/logits": 0.19264021515846252, + "loss/reg": 179.1678924560547, + "step": 349 + }, + { + "epoch": 0.00875, + "grad_norm": 3.221050500869751, + "grad_norm_var": 0.04594406550980518, + "learning_rate": 0.0001, + "loss": 181.849, + "loss/crossentropy": 2.9532337188720703, + "loss/hidden": 0.0, + "loss/logits": 0.2272038757801056, + "loss/reg": 178.6685333251953, + "step": 350 + }, + { + "epoch": 0.008775, + "grad_norm": 2.788480520248413, + "grad_norm_var": 0.04041268740233453, + "learning_rate": 0.0001, + "loss": 181.0548, + "loss/crossentropy": 2.6735174655914307, + "loss/hidden": 0.0, + "loss/logits": 0.20720481872558594, + "loss/reg": 178.17410278320312, + "step": 351 + }, + { + "epoch": 0.0088, + "grad_norm": 2.8164358139038086, + "grad_norm_var": 0.040045045030925056, + "learning_rate": 0.0001, + "loss": 180.8875, + "loss/crossentropy": 3.0074617862701416, + "loss/hidden": 0.0, + "loss/logits": 0.20497429370880127, + "loss/reg": 177.67507934570312, + "step": 352 + }, + { + "epoch": 0.008825, + "grad_norm": 2.459709882736206, + "grad_norm_var": 0.05068183434945368, + "learning_rate": 0.0001, + "loss": 180.1328, + "loss/crossentropy": 2.7839858531951904, + "loss/hidden": 0.0, + "loss/logits": 0.16963033378124237, + "loss/reg": 177.17913818359375, + "step": 353 + }, + { + "epoch": 0.00885, + "grad_norm": 2.582552909851074, + "grad_norm_var": 0.05037757045170774, + "learning_rate": 0.0001, + "loss": 179.5129, + "loss/crossentropy": 2.63332200050354, + "loss/hidden": 0.0, + "loss/logits": 0.18901947140693665, + "loss/reg": 176.6905975341797, + "step": 354 + }, + { + "epoch": 0.008875, + "grad_norm": 2.6625685691833496, + "grad_norm_var": 0.04505259166354089, + "learning_rate": 0.0001, + "loss": 179.0017, + "loss/crossentropy": 2.6259818077087402, + "loss/hidden": 0.0, + "loss/logits": 0.1885865181684494, + "loss/reg": 176.18716430664062, + "step": 355 + }, + { + "epoch": 0.0089, + "grad_norm": 2.9031405448913574, + "grad_norm_var": 0.03846567871036252, + "learning_rate": 0.0001, + "loss": 178.6655, + "loss/crossentropy": 2.7855353355407715, + "loss/hidden": 0.0, + "loss/logits": 0.19966638088226318, + "loss/reg": 175.6802520751953, + "step": 356 + }, + { + "epoch": 0.008925, + "grad_norm": 2.6948978900909424, + "grad_norm_var": 0.03481774262957226, + "learning_rate": 0.0001, + "loss": 178.1122, + "loss/crossentropy": 2.7389872074127197, + "loss/hidden": 0.0, + "loss/logits": 0.20075306296348572, + "loss/reg": 175.1724090576172, + "step": 357 + }, + { + "epoch": 0.00895, + "grad_norm": 2.755830764770508, + "grad_norm_var": 0.03435983560266701, + "learning_rate": 0.0001, + "loss": 177.4502, + "loss/crossentropy": 2.594728946685791, + "loss/hidden": 0.0, + "loss/logits": 0.19329878687858582, + "loss/reg": 174.6621551513672, + "step": 358 + }, + { + "epoch": 0.008975, + "grad_norm": 2.4237000942230225, + "grad_norm_var": 0.038510630346210446, + "learning_rate": 0.0001, + "loss": 176.9384, + "loss/crossentropy": 2.599057197570801, + "loss/hidden": 0.0, + "loss/logits": 0.1731238067150116, + "loss/reg": 174.16619873046875, + "step": 359 + }, + { + "epoch": 0.009, + "grad_norm": 2.7944130897521973, + "grad_norm_var": 0.03861118264588394, + "learning_rate": 0.0001, + "loss": 176.9084, + "loss/crossentropy": 2.9929091930389404, + "loss/hidden": 0.0, + "loss/logits": 0.24037709832191467, + "loss/reg": 173.67515563964844, + "step": 360 + }, + { + "epoch": 0.009025, + "grad_norm": 2.8927605152130127, + "grad_norm_var": 0.03817964658272786, + "learning_rate": 0.0001, + "loss": 176.0866, + "loss/crossentropy": 2.695925712585449, + "loss/hidden": 0.0, + "loss/logits": 0.2011643946170807, + "loss/reg": 173.1894989013672, + "step": 361 + }, + { + "epoch": 0.00905, + "grad_norm": 2.654205799102783, + "grad_norm_var": 0.038491602775841474, + "learning_rate": 0.0001, + "loss": 175.8716, + "loss/crossentropy": 2.9696269035339355, + "loss/hidden": 0.0, + "loss/logits": 0.19813314080238342, + "loss/reg": 172.70388793945312, + "step": 362 + }, + { + "epoch": 0.009075, + "grad_norm": 2.500924587249756, + "grad_norm_var": 0.0422227970984134, + "learning_rate": 0.0001, + "loss": 175.0925, + "loss/crossentropy": 2.694688558578491, + "loss/hidden": 0.0, + "loss/logits": 0.19237878918647766, + "loss/reg": 172.20538330078125, + "step": 363 + }, + { + "epoch": 0.0091, + "grad_norm": 2.856943130493164, + "grad_norm_var": 0.04231316052960944, + "learning_rate": 0.0001, + "loss": 174.687, + "loss/crossentropy": 2.7701804637908936, + "loss/hidden": 0.0, + "loss/logits": 0.19237452745437622, + "loss/reg": 171.72442626953125, + "step": 364 + }, + { + "epoch": 0.009125, + "grad_norm": 3.0055325031280518, + "grad_norm_var": 0.043401276039503264, + "learning_rate": 0.0001, + "loss": 174.6459, + "loss/crossentropy": 3.1644747257232666, + "loss/hidden": 0.0, + "loss/logits": 0.24399538338184357, + "loss/reg": 171.23745727539062, + "step": 365 + }, + { + "epoch": 0.00915, + "grad_norm": 2.485426664352417, + "grad_norm_var": 0.031101142054486056, + "learning_rate": 0.0001, + "loss": 173.739, + "loss/crossentropy": 2.804879903793335, + "loss/hidden": 0.0, + "loss/logits": 0.1790430247783661, + "loss/reg": 170.75502014160156, + "step": 366 + }, + { + "epoch": 0.009175, + "grad_norm": 2.922252655029297, + "grad_norm_var": 0.033711321846642286, + "learning_rate": 0.0001, + "loss": 173.451, + "loss/crossentropy": 2.9688096046447754, + "loss/hidden": 0.0, + "loss/logits": 0.20513179898262024, + "loss/reg": 170.2770538330078, + "step": 367 + }, + { + "epoch": 0.0092, + "grad_norm": 2.730825662612915, + "grad_norm_var": 0.032991054055673645, + "learning_rate": 0.0001, + "loss": 172.7964, + "loss/crossentropy": 2.7933456897735596, + "loss/hidden": 0.0, + "loss/logits": 0.20646029710769653, + "loss/reg": 169.796630859375, + "step": 368 + }, + { + "epoch": 0.009225, + "grad_norm": 2.482426881790161, + "grad_norm_var": 0.03227169195139723, + "learning_rate": 0.0001, + "loss": 172.0632, + "loss/crossentropy": 2.5588743686676025, + "loss/hidden": 0.0, + "loss/logits": 0.18388806283473969, + "loss/reg": 169.3204803466797, + "step": 369 + }, + { + "epoch": 0.00925, + "grad_norm": 2.739718198776245, + "grad_norm_var": 0.03115998847033552, + "learning_rate": 0.0001, + "loss": 171.5819, + "loss/crossentropy": 2.54241681098938, + "loss/hidden": 0.0, + "loss/logits": 0.19010567665100098, + "loss/reg": 168.84933471679688, + "step": 370 + }, + { + "epoch": 0.009275, + "grad_norm": 2.8765339851379395, + "grad_norm_var": 0.03240860179928783, + "learning_rate": 0.0001, + "loss": 171.0873, + "loss/crossentropy": 2.5227410793304443, + "loss/hidden": 0.0, + "loss/logits": 0.18850305676460266, + "loss/reg": 168.37608337402344, + "step": 371 + }, + { + "epoch": 0.0093, + "grad_norm": 2.648451089859009, + "grad_norm_var": 0.030667067483867782, + "learning_rate": 0.0001, + "loss": 170.7962, + "loss/crossentropy": 2.701418161392212, + "loss/hidden": 0.0, + "loss/logits": 0.18235236406326294, + "loss/reg": 167.9124755859375, + "step": 372 + }, + { + "epoch": 0.009325, + "grad_norm": 2.3994297981262207, + "grad_norm_var": 0.03697651271872549, + "learning_rate": 0.0001, + "loss": 170.5056, + "loss/crossentropy": 2.8883211612701416, + "loss/hidden": 0.0, + "loss/logits": 0.17240813374519348, + "loss/reg": 167.44482421875, + "step": 373 + }, + { + "epoch": 0.00935, + "grad_norm": 2.760050058364868, + "grad_norm_var": 0.03701011100701498, + "learning_rate": 0.0001, + "loss": 170.0168, + "loss/crossentropy": 2.828566551208496, + "loss/hidden": 0.0, + "loss/logits": 0.20667554438114166, + "loss/reg": 166.98158264160156, + "step": 374 + }, + { + "epoch": 0.009375, + "grad_norm": 2.598747968673706, + "grad_norm_var": 0.032514977652635696, + "learning_rate": 0.0001, + "loss": 169.915, + "loss/crossentropy": 3.2055323123931885, + "loss/hidden": 0.0, + "loss/logits": 0.18947294354438782, + "loss/reg": 166.51995849609375, + "step": 375 + }, + { + "epoch": 0.0094, + "grad_norm": 2.5448288917541504, + "grad_norm_var": 0.03357553294952117, + "learning_rate": 0.0001, + "loss": 169.237, + "loss/crossentropy": 2.9864261150360107, + "loss/hidden": 0.0, + "loss/logits": 0.19935306906700134, + "loss/reg": 166.05117797851562, + "step": 376 + }, + { + "epoch": 0.009425, + "grad_norm": 2.9218602180480957, + "grad_norm_var": 0.034400838745598135, + "learning_rate": 0.0001, + "loss": 169.3156, + "loss/crossentropy": 3.513453722000122, + "loss/hidden": 0.0, + "loss/logits": 0.21727558970451355, + "loss/reg": 165.5848846435547, + "step": 377 + }, + { + "epoch": 0.00945, + "grad_norm": 2.6745686531066895, + "grad_norm_var": 0.03431461157821616, + "learning_rate": 0.0001, + "loss": 167.9062, + "loss/crossentropy": 2.607114791870117, + "loss/hidden": 0.0, + "loss/logits": 0.17556855082511902, + "loss/reg": 165.1234893798828, + "step": 378 + }, + { + "epoch": 0.009475, + "grad_norm": 2.8298020362854004, + "grad_norm_var": 0.03248619908528383, + "learning_rate": 0.0001, + "loss": 167.8138, + "loss/crossentropy": 2.9435441493988037, + "loss/hidden": 0.0, + "loss/logits": 0.20177403092384338, + "loss/reg": 164.66851806640625, + "step": 379 + }, + { + "epoch": 0.0095, + "grad_norm": 2.4895458221435547, + "grad_norm_var": 0.03408372867624981, + "learning_rate": 0.0001, + "loss": 167.1126, + "loss/crossentropy": 2.7143633365631104, + "loss/hidden": 0.0, + "loss/logits": 0.1809697151184082, + "loss/reg": 164.2172393798828, + "step": 380 + }, + { + "epoch": 0.009525, + "grad_norm": 2.7371509075164795, + "grad_norm_var": 0.027450997371564274, + "learning_rate": 0.0001, + "loss": 166.7423, + "loss/crossentropy": 2.7732856273651123, + "loss/hidden": 0.0, + "loss/logits": 0.1965845823287964, + "loss/reg": 163.7724609375, + "step": 381 + }, + { + "epoch": 0.00955, + "grad_norm": 2.873455047607422, + "grad_norm_var": 0.026918816484265782, + "learning_rate": 0.0001, + "loss": 166.429, + "loss/crossentropy": 2.9108941555023193, + "loss/hidden": 0.0, + "loss/logits": 0.20937275886535645, + "loss/reg": 163.30874633789062, + "step": 382 + }, + { + "epoch": 0.009575, + "grad_norm": 2.4213316440582275, + "grad_norm_var": 0.02788105642846309, + "learning_rate": 0.0001, + "loss": 165.6412, + "loss/crossentropy": 2.609408140182495, + "loss/hidden": 0.0, + "loss/logits": 0.18198969960212708, + "loss/reg": 162.84983825683594, + "step": 383 + }, + { + "epoch": 0.0096, + "grad_norm": 2.3272271156311035, + "grad_norm_var": 0.03481792449697399, + "learning_rate": 0.0001, + "loss": 165.1343, + "loss/crossentropy": 2.555964469909668, + "loss/hidden": 0.0, + "loss/logits": 0.19197088479995728, + "loss/reg": 162.3863983154297, + "step": 384 + }, + { + "epoch": 0.009625, + "grad_norm": 2.934056282043457, + "grad_norm_var": 0.03775698672306949, + "learning_rate": 0.0001, + "loss": 165.2302, + "loss/crossentropy": 3.0558810234069824, + "loss/hidden": 0.0, + "loss/logits": 0.2526497542858124, + "loss/reg": 161.92169189453125, + "step": 385 + }, + { + "epoch": 0.00965, + "grad_norm": 2.6826000213623047, + "grad_norm_var": 0.03745695106176162, + "learning_rate": 0.0001, + "loss": 163.9906, + "loss/crossentropy": 2.3432304859161377, + "loss/hidden": 0.0, + "loss/logits": 0.18046601116657257, + "loss/reg": 161.46690368652344, + "step": 386 + }, + { + "epoch": 0.009675, + "grad_norm": 2.6484644412994385, + "grad_norm_var": 0.03442670004298994, + "learning_rate": 0.0001, + "loss": 163.9132, + "loss/crossentropy": 2.702923536300659, + "loss/hidden": 0.0, + "loss/logits": 0.2004016935825348, + "loss/reg": 161.00990295410156, + "step": 387 + }, + { + "epoch": 0.0097, + "grad_norm": 2.6372387409210205, + "grad_norm_var": 0.03444542888671454, + "learning_rate": 0.0001, + "loss": 163.1478, + "loss/crossentropy": 2.4251551628112793, + "loss/hidden": 0.0, + "loss/logits": 0.16877132654190063, + "loss/reg": 160.5538787841797, + "step": 388 + }, + { + "epoch": 0.009725, + "grad_norm": 2.702305793762207, + "grad_norm_var": 0.029857082413892993, + "learning_rate": 0.0001, + "loss": 163.1074, + "loss/crossentropy": 2.8232805728912354, + "loss/hidden": 0.0, + "loss/logits": 0.185012549161911, + "loss/reg": 160.09906005859375, + "step": 389 + }, + { + "epoch": 0.00975, + "grad_norm": 2.8600754737854004, + "grad_norm_var": 0.031630664651837746, + "learning_rate": 0.0001, + "loss": 162.6523, + "loss/crossentropy": 2.8138694763183594, + "loss/hidden": 0.0, + "loss/logits": 0.19447121024131775, + "loss/reg": 159.64395141601562, + "step": 390 + }, + { + "epoch": 0.009775, + "grad_norm": 3.1134562492370605, + "grad_norm_var": 0.0425983283858803, + "learning_rate": 0.0001, + "loss": 162.2286, + "loss/crossentropy": 2.8298885822296143, + "loss/hidden": 0.0, + "loss/logits": 0.19982922077178955, + "loss/reg": 159.1988983154297, + "step": 391 + }, + { + "epoch": 0.0098, + "grad_norm": 2.7824184894561768, + "grad_norm_var": 0.04081881578391986, + "learning_rate": 0.0001, + "loss": 161.8162, + "loss/crossentropy": 2.8324615955352783, + "loss/hidden": 0.0, + "loss/logits": 0.23998713493347168, + "loss/reg": 158.74378967285156, + "step": 392 + }, + { + "epoch": 0.009825, + "grad_norm": 2.5551321506500244, + "grad_norm_var": 0.039707183410192214, + "learning_rate": 0.0001, + "loss": 161.2205, + "loss/crossentropy": 2.7324817180633545, + "loss/hidden": 0.0, + "loss/logits": 0.20197457075119019, + "loss/reg": 158.28604125976562, + "step": 393 + }, + { + "epoch": 0.00985, + "grad_norm": 2.9523658752441406, + "grad_norm_var": 0.04342908454165884, + "learning_rate": 0.0001, + "loss": 161.0285, + "loss/crossentropy": 2.9625911712646484, + "loss/hidden": 0.0, + "loss/logits": 0.23311267793178558, + "loss/reg": 157.83279418945312, + "step": 394 + }, + { + "epoch": 0.009875, + "grad_norm": 2.851621627807617, + "grad_norm_var": 0.043773443776307396, + "learning_rate": 0.0001, + "loss": 160.4359, + "loss/crossentropy": 2.845726728439331, + "loss/hidden": 0.0, + "loss/logits": 0.20467609167099, + "loss/reg": 157.38543701171875, + "step": 395 + }, + { + "epoch": 0.0099, + "grad_norm": 2.7198143005371094, + "grad_norm_var": 0.03991894337190445, + "learning_rate": 0.0001, + "loss": 159.8738, + "loss/crossentropy": 2.746978998184204, + "loss/hidden": 0.0, + "loss/logits": 0.19763833284378052, + "loss/reg": 156.92922973632812, + "step": 396 + }, + { + "epoch": 0.009925, + "grad_norm": 3.205587148666382, + "grad_norm_var": 0.05361669114409532, + "learning_rate": 0.0001, + "loss": 159.7989, + "loss/crossentropy": 3.081794261932373, + "loss/hidden": 0.0, + "loss/logits": 0.2381635308265686, + "loss/reg": 156.47898864746094, + "step": 397 + }, + { + "epoch": 0.00995, + "grad_norm": 2.616609573364258, + "grad_norm_var": 0.05408374472743371, + "learning_rate": 0.0001, + "loss": 159.1617, + "loss/crossentropy": 2.927096128463745, + "loss/hidden": 0.0, + "loss/logits": 0.21107865869998932, + "loss/reg": 156.02352905273438, + "step": 398 + }, + { + "epoch": 0.009975, + "grad_norm": 2.7694790363311768, + "grad_norm_var": 0.04637258989533374, + "learning_rate": 0.0001, + "loss": 158.5532, + "loss/crossentropy": 2.7599570751190186, + "loss/hidden": 0.0, + "loss/logits": 0.22352541983127594, + "loss/reg": 155.56968688964844, + "step": 399 + }, + { + "epoch": 0.01, + "grad_norm": 2.700110912322998, + "grad_norm_var": 0.032929538641367155, + "learning_rate": 0.0001, + "loss": 157.9857, + "loss/crossentropy": 2.6631603240966797, + "loss/hidden": 0.0, + "loss/logits": 0.20680838823318481, + "loss/reg": 155.11572265625, + "step": 400 + }, + { + "epoch": 0.010025, + "grad_norm": 2.723098039627075, + "grad_norm_var": 0.031819586107117694, + "learning_rate": 0.0001, + "loss": 157.8913, + "loss/crossentropy": 3.0035312175750732, + "loss/hidden": 0.0, + "loss/logits": 0.21532365679740906, + "loss/reg": 154.67247009277344, + "step": 401 + }, + { + "epoch": 0.01005, + "grad_norm": 3.2790751457214355, + "grad_norm_var": 0.046109071751097255, + "learning_rate": 0.0001, + "loss": 157.6402, + "loss/crossentropy": 3.1786797046661377, + "loss/hidden": 0.0, + "loss/logits": 0.2247261106967926, + "loss/reg": 154.2367706298828, + "step": 402 + }, + { + "epoch": 0.010075, + "grad_norm": 3.035478353500366, + "grad_norm_var": 0.04662890368927582, + "learning_rate": 0.0001, + "loss": 156.9016, + "loss/crossentropy": 2.859160900115967, + "loss/hidden": 0.0, + "loss/logits": 0.23791690170764923, + "loss/reg": 153.80447387695312, + "step": 403 + }, + { + "epoch": 0.0101, + "grad_norm": 3.228116750717163, + "grad_norm_var": 0.05216118625241369, + "learning_rate": 0.0001, + "loss": 156.2435, + "loss/crossentropy": 2.6365485191345215, + "loss/hidden": 0.0, + "loss/logits": 0.23830467462539673, + "loss/reg": 153.36862182617188, + "step": 404 + }, + { + "epoch": 0.010125, + "grad_norm": 2.873171091079712, + "grad_norm_var": 0.049916639205365716, + "learning_rate": 0.0001, + "loss": 156.137, + "loss/crossentropy": 2.9804184436798096, + "loss/hidden": 0.0, + "loss/logits": 0.2179238498210907, + "loss/reg": 152.9386444091797, + "step": 405 + }, + { + "epoch": 0.01015, + "grad_norm": 2.98555326461792, + "grad_norm_var": 0.05037325371620132, + "learning_rate": 0.0001, + "loss": 155.7607, + "loss/crossentropy": 3.0471410751342773, + "loss/hidden": 0.0, + "loss/logits": 0.20413793623447418, + "loss/reg": 152.50946044921875, + "step": 406 + }, + { + "epoch": 0.010175, + "grad_norm": 7.3229899406433105, + "grad_norm_var": 1.2780035865068755, + "learning_rate": 0.0001, + "loss": 155.6208, + "loss/crossentropy": 3.179004192352295, + "loss/hidden": 0.0, + "loss/logits": 0.3593263626098633, + "loss/reg": 152.0824432373047, + "step": 407 + }, + { + "epoch": 0.0102, + "grad_norm": 2.5819976329803467, + "grad_norm_var": 1.2906719922528245, + "learning_rate": 0.0001, + "loss": 154.8975, + "loss/crossentropy": 3.030137538909912, + "loss/hidden": 0.0, + "loss/logits": 0.20869307219982147, + "loss/reg": 151.65867614746094, + "step": 408 + }, + { + "epoch": 0.010225, + "grad_norm": 2.881765604019165, + "grad_norm_var": 1.2714323685464743, + "learning_rate": 0.0001, + "loss": 154.2088, + "loss/crossentropy": 2.7575833797454834, + "loss/hidden": 0.0, + "loss/logits": 0.2238922119140625, + "loss/reg": 151.2273712158203, + "step": 409 + }, + { + "epoch": 0.01025, + "grad_norm": 3.032489061355591, + "grad_norm_var": 1.269504032877872, + "learning_rate": 0.0001, + "loss": 154.2042, + "loss/crossentropy": 3.1616742610931396, + "loss/hidden": 0.0, + "loss/logits": 0.24033766984939575, + "loss/reg": 150.8022003173828, + "step": 410 + }, + { + "epoch": 0.010275, + "grad_norm": 2.8271679878234863, + "grad_norm_var": 1.270597194896881, + "learning_rate": 0.0001, + "loss": 153.2748, + "loss/crossentropy": 2.699521780014038, + "loss/hidden": 0.0, + "loss/logits": 0.20507997274398804, + "loss/reg": 150.3701934814453, + "step": 411 + }, + { + "epoch": 0.0103, + "grad_norm": 2.8864877223968506, + "grad_norm_var": 1.2622421001984312, + "learning_rate": 0.0001, + "loss": 152.7086, + "loss/crossentropy": 2.557340383529663, + "loss/hidden": 0.0, + "loss/logits": 0.20991156995296478, + "loss/reg": 149.94137573242188, + "step": 412 + }, + { + "epoch": 0.010325, + "grad_norm": 2.665037155151367, + "grad_norm_var": 1.278971707345721, + "learning_rate": 0.0001, + "loss": 152.6803, + "loss/crossentropy": 2.9646856784820557, + "loss/hidden": 0.0, + "loss/logits": 0.19997093081474304, + "loss/reg": 149.51559448242188, + "step": 413 + }, + { + "epoch": 0.01035, + "grad_norm": 2.9376747608184814, + "grad_norm_var": 1.2625575568111116, + "learning_rate": 0.0001, + "loss": 151.8695, + "loss/crossentropy": 2.5759167671203613, + "loss/hidden": 0.0, + "loss/logits": 0.2004423588514328, + "loss/reg": 149.09315490722656, + "step": 414 + }, + { + "epoch": 0.010375, + "grad_norm": 2.8804266452789307, + "grad_norm_var": 1.2573930188301232, + "learning_rate": 0.0001, + "loss": 151.6834, + "loss/crossentropy": 2.805604934692383, + "loss/hidden": 0.0, + "loss/logits": 0.19938749074935913, + "loss/reg": 148.67840576171875, + "step": 415 + }, + { + "epoch": 0.0104, + "grad_norm": 2.844179153442383, + "grad_norm_var": 1.2495192648568405, + "learning_rate": 0.0001, + "loss": 151.2533, + "loss/crossentropy": 2.804511547088623, + "loss/hidden": 0.0, + "loss/logits": 0.19970285892486572, + "loss/reg": 148.2490692138672, + "step": 416 + }, + { + "epoch": 0.010425, + "grad_norm": 2.5592336654663086, + "grad_norm_var": 1.2613231291949638, + "learning_rate": 0.0001, + "loss": 150.7822, + "loss/crossentropy": 2.7462940216064453, + "loss/hidden": 0.0, + "loss/logits": 0.20548762381076813, + "loss/reg": 147.8304443359375, + "step": 417 + }, + { + "epoch": 0.01045, + "grad_norm": 2.6821486949920654, + "grad_norm_var": 1.2754135282406718, + "learning_rate": 0.0001, + "loss": 150.2964, + "loss/crossentropy": 2.685582399368286, + "loss/hidden": 0.0, + "loss/logits": 0.20678475499153137, + "loss/reg": 147.40402221679688, + "step": 418 + }, + { + "epoch": 0.010475, + "grad_norm": 2.9765594005584717, + "grad_norm_var": 1.2764437045171377, + "learning_rate": 0.0001, + "loss": 150.4573, + "loss/crossentropy": 3.2364401817321777, + "loss/hidden": 0.0, + "loss/logits": 0.2370205670595169, + "loss/reg": 146.98388671875, + "step": 419 + }, + { + "epoch": 0.0105, + "grad_norm": 2.849670886993408, + "grad_norm_var": 1.2807121780616888, + "learning_rate": 0.0001, + "loss": 149.4418, + "loss/crossentropy": 2.6446595191955566, + "loss/hidden": 0.0, + "loss/logits": 0.23380397260189056, + "loss/reg": 146.56333923339844, + "step": 420 + }, + { + "epoch": 0.010525, + "grad_norm": 2.668278694152832, + "grad_norm_var": 1.289851246662234, + "learning_rate": 0.0001, + "loss": 149.259, + "loss/crossentropy": 2.9065048694610596, + "loss/hidden": 0.0, + "loss/logits": 0.21474584937095642, + "loss/reg": 146.1377716064453, + "step": 421 + }, + { + "epoch": 0.01055, + "grad_norm": 2.594972848892212, + "grad_norm_var": 1.3052862072893956, + "learning_rate": 0.0001, + "loss": 148.7854, + "loss/crossentropy": 2.8732926845550537, + "loss/hidden": 0.0, + "loss/logits": 0.19787928462028503, + "loss/reg": 145.71426391601562, + "step": 422 + }, + { + "epoch": 0.010575, + "grad_norm": 3.493597984313965, + "grad_norm_var": 0.05255425549001392, + "learning_rate": 0.0001, + "loss": 148.5448, + "loss/crossentropy": 2.979468584060669, + "loss/hidden": 0.0, + "loss/logits": 0.2681131958961487, + "loss/reg": 145.29721069335938, + "step": 423 + }, + { + "epoch": 0.0106, + "grad_norm": 2.545316219329834, + "grad_norm_var": 0.05387626475652117, + "learning_rate": 0.0001, + "loss": 147.7063, + "loss/crossentropy": 2.627589225769043, + "loss/hidden": 0.0, + "loss/logits": 0.1998068243265152, + "loss/reg": 144.87893676757812, + "step": 424 + }, + { + "epoch": 0.010625, + "grad_norm": 2.801800489425659, + "grad_norm_var": 0.05375398155694313, + "learning_rate": 0.0001, + "loss": 147.7385, + "loss/crossentropy": 3.051680088043213, + "loss/hidden": 0.0, + "loss/logits": 0.23187664151191711, + "loss/reg": 144.4549560546875, + "step": 425 + }, + { + "epoch": 0.01065, + "grad_norm": 2.5229389667510986, + "grad_norm_var": 0.056076010247692425, + "learning_rate": 0.0001, + "loss": 146.9956, + "loss/crossentropy": 2.7526652812957764, + "loss/hidden": 0.0, + "loss/logits": 0.20328941941261292, + "loss/reg": 144.0396270751953, + "step": 426 + }, + { + "epoch": 0.010675, + "grad_norm": 2.885693311691284, + "grad_norm_var": 0.05653354974819133, + "learning_rate": 0.0001, + "loss": 146.6748, + "loss/crossentropy": 2.816437244415283, + "loss/hidden": 0.0, + "loss/logits": 0.22479213774204254, + "loss/reg": 143.633544921875, + "step": 427 + }, + { + "epoch": 0.0107, + "grad_norm": 2.888580083847046, + "grad_norm_var": 0.05655805617718836, + "learning_rate": 0.0001, + "loss": 146.5772, + "loss/crossentropy": 3.1261234283447266, + "loss/hidden": 0.0, + "loss/logits": 0.2150314301252365, + "loss/reg": 143.23602294921875, + "step": 428 + }, + { + "epoch": 0.010725, + "grad_norm": 2.679644823074341, + "grad_norm_var": 0.05630900067725785, + "learning_rate": 0.0001, + "loss": 145.6467, + "loss/crossentropy": 2.6079299449920654, + "loss/hidden": 0.0, + "loss/logits": 0.21127401292324066, + "loss/reg": 142.82745361328125, + "step": 429 + }, + { + "epoch": 0.01075, + "grad_norm": 2.5422425270080566, + "grad_norm_var": 0.05885842547493757, + "learning_rate": 0.0001, + "loss": 145.2591, + "loss/crossentropy": 2.6437766551971436, + "loss/hidden": 0.0, + "loss/logits": 0.19190073013305664, + "loss/reg": 142.42344665527344, + "step": 430 + }, + { + "epoch": 0.010775, + "grad_norm": 2.6776621341705322, + "grad_norm_var": 0.058603604392913886, + "learning_rate": 0.0001, + "loss": 145.2115, + "loss/crossentropy": 2.9833149909973145, + "loss/hidden": 0.0, + "loss/logits": 0.2141813039779663, + "loss/reg": 142.0140380859375, + "step": 431 + }, + { + "epoch": 0.0108, + "grad_norm": 2.8127005100250244, + "grad_norm_var": 0.058326000336826195, + "learning_rate": 0.0001, + "loss": 145.2914, + "loss/crossentropy": 3.4850382804870605, + "loss/hidden": 0.0, + "loss/logits": 0.1998693197965622, + "loss/reg": 141.60650634765625, + "step": 432 + }, + { + "epoch": 0.010825, + "grad_norm": 2.7787222862243652, + "grad_norm_var": 0.05542301102962029, + "learning_rate": 0.0001, + "loss": 144.1324, + "loss/crossentropy": 2.7224390506744385, + "loss/hidden": 0.0, + "loss/logits": 0.21212972700595856, + "loss/reg": 141.1977996826172, + "step": 433 + }, + { + "epoch": 0.01085, + "grad_norm": 2.582594156265259, + "grad_norm_var": 0.057275397262241276, + "learning_rate": 0.0001, + "loss": 143.8046, + "loss/crossentropy": 2.824321985244751, + "loss/hidden": 0.0, + "loss/logits": 0.19551266729831696, + "loss/reg": 140.7847900390625, + "step": 434 + }, + { + "epoch": 0.010875, + "grad_norm": 2.746096134185791, + "grad_norm_var": 0.05421119495302354, + "learning_rate": 0.0001, + "loss": 143.3764, + "loss/crossentropy": 2.780687093734741, + "loss/hidden": 0.0, + "loss/logits": 0.21173939108848572, + "loss/reg": 140.38397216796875, + "step": 435 + }, + { + "epoch": 0.0109, + "grad_norm": 3.0453367233276367, + "grad_norm_var": 0.05908933324654957, + "learning_rate": 0.0001, + "loss": 143.2668, + "loss/crossentropy": 3.0895285606384277, + "loss/hidden": 0.0, + "loss/logits": 0.2058122158050537, + "loss/reg": 139.97145080566406, + "step": 436 + }, + { + "epoch": 0.010925, + "grad_norm": 2.8102662563323975, + "grad_norm_var": 0.058487291701452664, + "learning_rate": 0.0001, + "loss": 142.5939, + "loss/crossentropy": 2.8098881244659424, + "loss/hidden": 0.0, + "loss/logits": 0.21639777719974518, + "loss/reg": 139.56761169433594, + "step": 437 + }, + { + "epoch": 0.01095, + "grad_norm": 2.786220073699951, + "grad_norm_var": 0.05616962127030523, + "learning_rate": 0.0001, + "loss": 142.2782, + "loss/crossentropy": 2.889941453933716, + "loss/hidden": 0.0, + "loss/logits": 0.22128039598464966, + "loss/reg": 139.16693115234375, + "step": 438 + }, + { + "epoch": 0.010975, + "grad_norm": 2.496029853820801, + "grad_norm_var": 0.024443678618327407, + "learning_rate": 0.0001, + "loss": 141.7307, + "loss/crossentropy": 2.751573085784912, + "loss/hidden": 0.0, + "loss/logits": 0.19620397686958313, + "loss/reg": 138.782958984375, + "step": 439 + }, + { + "epoch": 0.011, + "grad_norm": 4.073153495788574, + "grad_norm_var": 0.13370943824087528, + "learning_rate": 0.0001, + "loss": 141.1084, + "loss/crossentropy": 2.547888994216919, + "loss/hidden": 0.0, + "loss/logits": 0.1862032264471054, + "loss/reg": 138.37429809570312, + "step": 440 + }, + { + "epoch": 0.011025, + "grad_norm": 2.8439884185791016, + "grad_norm_var": 0.13371489998645056, + "learning_rate": 0.0001, + "loss": 141.1169, + "loss/crossentropy": 2.9181034564971924, + "loss/hidden": 0.0, + "loss/logits": 0.22650295495986938, + "loss/reg": 137.97227478027344, + "step": 441 + }, + { + "epoch": 0.01105, + "grad_norm": 3.0714433193206787, + "grad_norm_var": 0.13055613818799353, + "learning_rate": 0.0001, + "loss": 140.6507, + "loss/crossentropy": 2.857541084289551, + "loss/hidden": 0.0, + "loss/logits": 0.21894115209579468, + "loss/reg": 137.57418823242188, + "step": 442 + }, + { + "epoch": 0.011075, + "grad_norm": 2.4183578491210938, + "grad_norm_var": 0.14245098271452789, + "learning_rate": 0.0001, + "loss": 140.0377, + "loss/crossentropy": 2.6772847175598145, + "loss/hidden": 0.0, + "loss/logits": 0.18452061712741852, + "loss/reg": 137.17588806152344, + "step": 443 + }, + { + "epoch": 0.0111, + "grad_norm": 3.0140979290008545, + "grad_norm_var": 0.14444423385113864, + "learning_rate": 0.0001, + "loss": 139.7851, + "loss/crossentropy": 2.8040971755981445, + "loss/hidden": 0.0, + "loss/logits": 0.19091713428497314, + "loss/reg": 136.79010009765625, + "step": 444 + }, + { + "epoch": 0.011125, + "grad_norm": 2.9585142135620117, + "grad_norm_var": 0.14348511163545558, + "learning_rate": 0.0001, + "loss": 139.3333, + "loss/crossentropy": 2.7211837768554688, + "loss/hidden": 0.0, + "loss/logits": 0.2089160978794098, + "loss/reg": 136.40313720703125, + "step": 445 + }, + { + "epoch": 0.01115, + "grad_norm": 2.8655238151550293, + "grad_norm_var": 0.1365966991771605, + "learning_rate": 0.0001, + "loss": 139.1563, + "loss/crossentropy": 2.9270730018615723, + "loss/hidden": 0.0, + "loss/logits": 0.21874740719795227, + "loss/reg": 136.01043701171875, + "step": 446 + }, + { + "epoch": 0.011175, + "grad_norm": 3.5568222999572754, + "grad_norm_var": 0.16191349512506553, + "learning_rate": 0.0001, + "loss": 138.9605, + "loss/crossentropy": 3.0990545749664307, + "loss/hidden": 0.0, + "loss/logits": 0.2374783754348755, + "loss/reg": 135.62399291992188, + "step": 447 + }, + { + "epoch": 0.0112, + "grad_norm": 3.069288730621338, + "grad_norm_var": 0.16205836586185096, + "learning_rate": 0.0001, + "loss": 138.2294, + "loss/crossentropy": 2.8115599155426025, + "loss/hidden": 0.0, + "loss/logits": 0.19097256660461426, + "loss/reg": 135.22686767578125, + "step": 448 + }, + { + "epoch": 0.011225, + "grad_norm": 2.829019784927368, + "grad_norm_var": 0.16110285265393878, + "learning_rate": 0.0001, + "loss": 137.3381, + "loss/crossentropy": 2.2983205318450928, + "loss/hidden": 0.0, + "loss/logits": 0.20224307477474213, + "loss/reg": 134.8375701904297, + "step": 449 + }, + { + "epoch": 0.01125, + "grad_norm": 2.959508180618286, + "grad_norm_var": 0.1516222356653503, + "learning_rate": 0.0001, + "loss": 137.696, + "loss/crossentropy": 3.0192501544952393, + "loss/hidden": 0.0, + "loss/logits": 0.22333860397338867, + "loss/reg": 134.4534149169922, + "step": 450 + }, + { + "epoch": 0.011275, + "grad_norm": 2.742422342300415, + "grad_norm_var": 0.15173348060539713, + "learning_rate": 0.0001, + "loss": 137.0164, + "loss/crossentropy": 2.738880157470703, + "loss/hidden": 0.0, + "loss/logits": 0.2160961925983429, + "loss/reg": 134.0614776611328, + "step": 451 + }, + { + "epoch": 0.0113, + "grad_norm": 2.8377208709716797, + "grad_norm_var": 0.1523766132789395, + "learning_rate": 0.0001, + "loss": 136.7287, + "loss/crossentropy": 2.8547892570495605, + "loss/hidden": 0.0, + "loss/logits": 0.21014469861984253, + "loss/reg": 133.6637420654297, + "step": 452 + }, + { + "epoch": 0.011325, + "grad_norm": 2.859851121902466, + "grad_norm_var": 0.15155175629658876, + "learning_rate": 0.0001, + "loss": 136.1562, + "loss/crossentropy": 2.66414213180542, + "loss/hidden": 0.0, + "loss/logits": 0.22573256492614746, + "loss/reg": 133.26629638671875, + "step": 453 + }, + { + "epoch": 0.01135, + "grad_norm": 2.6915457248687744, + "grad_norm_var": 0.15432295238523253, + "learning_rate": 0.0001, + "loss": 135.9197, + "loss/crossentropy": 2.8435401916503906, + "loss/hidden": 0.0, + "loss/logits": 0.19813670217990875, + "loss/reg": 132.87806701660156, + "step": 454 + }, + { + "epoch": 0.011375, + "grad_norm": 2.7335429191589355, + "grad_norm_var": 0.14329945186020698, + "learning_rate": 0.0001, + "loss": 135.273, + "loss/crossentropy": 2.5880157947540283, + "loss/hidden": 0.0, + "loss/logits": 0.19232623279094696, + "loss/reg": 132.49264526367188, + "step": 455 + }, + { + "epoch": 0.0114, + "grad_norm": 2.695430040359497, + "grad_norm_var": 0.059341799627403206, + "learning_rate": 0.0001, + "loss": 135.0541, + "loss/crossentropy": 2.746819257736206, + "loss/hidden": 0.0, + "loss/logits": 0.20626962184906006, + "loss/reg": 132.10101318359375, + "step": 456 + }, + { + "epoch": 0.011425, + "grad_norm": 2.8293468952178955, + "grad_norm_var": 0.05943368425061877, + "learning_rate": 0.0001, + "loss": 134.5696, + "loss/crossentropy": 2.6393778324127197, + "loss/hidden": 0.0, + "loss/logits": 0.21043707430362701, + "loss/reg": 131.71983337402344, + "step": 457 + }, + { + "epoch": 0.01145, + "grad_norm": 2.8794851303100586, + "grad_norm_var": 0.05692067856874985, + "learning_rate": 0.0001, + "loss": 134.1734, + "loss/crossentropy": 2.650709390640259, + "loss/hidden": 0.0, + "loss/logits": 0.19179099798202515, + "loss/reg": 131.3309326171875, + "step": 458 + }, + { + "epoch": 0.011475, + "grad_norm": 2.8426058292388916, + "grad_norm_var": 0.042549658611572026, + "learning_rate": 0.0001, + "loss": 133.6375, + "loss/crossentropy": 2.513119697570801, + "loss/hidden": 0.0, + "loss/logits": 0.17655596137046814, + "loss/reg": 130.9477996826172, + "step": 459 + }, + { + "epoch": 0.0115, + "grad_norm": 3.155630588531494, + "grad_norm_var": 0.045996375141740486, + "learning_rate": 0.0001, + "loss": 133.6152, + "loss/crossentropy": 2.833134651184082, + "loss/hidden": 0.0, + "loss/logits": 0.21260111033916473, + "loss/reg": 130.5695037841797, + "step": 460 + }, + { + "epoch": 0.011525, + "grad_norm": 2.494323492050171, + "grad_norm_var": 0.05625290696184659, + "learning_rate": 0.0001, + "loss": 133.0751, + "loss/crossentropy": 2.6999471187591553, + "loss/hidden": 0.0, + "loss/logits": 0.18340814113616943, + "loss/reg": 130.19174194335938, + "step": 461 + }, + { + "epoch": 0.01155, + "grad_norm": 2.6319777965545654, + "grad_norm_var": 0.06003884724692152, + "learning_rate": 0.0001, + "loss": 132.8793, + "loss/crossentropy": 2.860808849334717, + "loss/hidden": 0.0, + "loss/logits": 0.20245122909545898, + "loss/reg": 129.8160400390625, + "step": 462 + }, + { + "epoch": 0.011575, + "grad_norm": 2.514202117919922, + "grad_norm_var": 0.03153201551004561, + "learning_rate": 0.0001, + "loss": 132.3611, + "loss/crossentropy": 2.730762481689453, + "loss/hidden": 0.0, + "loss/logits": 0.18745794892311096, + "loss/reg": 129.44293212890625, + "step": 463 + }, + { + "epoch": 0.0116, + "grad_norm": 2.5370423793792725, + "grad_norm_var": 0.029975769359208235, + "learning_rate": 0.0001, + "loss": 131.8961, + "loss/crossentropy": 2.640779972076416, + "loss/hidden": 0.0, + "loss/logits": 0.18950456380844116, + "loss/reg": 129.0658416748047, + "step": 464 + }, + { + "epoch": 0.011625, + "grad_norm": 4.233380317687988, + "grad_norm_var": 0.16530188527350068, + "learning_rate": 0.0001, + "loss": 131.9097, + "loss/crossentropy": 2.9330646991729736, + "loss/hidden": 0.0, + "loss/logits": 0.2857138216495514, + "loss/reg": 128.69088745117188, + "step": 465 + }, + { + "epoch": 0.01165, + "grad_norm": 2.779022216796875, + "grad_norm_var": 0.16475971985575838, + "learning_rate": 0.0001, + "loss": 131.55, + "loss/crossentropy": 3.005692481994629, + "loss/hidden": 0.0, + "loss/logits": 0.22528377175331116, + "loss/reg": 128.3190460205078, + "step": 466 + }, + { + "epoch": 0.011675, + "grad_norm": 2.610145092010498, + "grad_norm_var": 0.16759359645252517, + "learning_rate": 0.0001, + "loss": 130.7001, + "loss/crossentropy": 2.568135976791382, + "loss/hidden": 0.0, + "loss/logits": 0.17949801683425903, + "loss/reg": 127.9524917602539, + "step": 467 + }, + { + "epoch": 0.0117, + "grad_norm": 2.7065391540527344, + "grad_norm_var": 0.1685835608909353, + "learning_rate": 0.0001, + "loss": 130.8896, + "loss/crossentropy": 3.0850789546966553, + "loss/hidden": 0.0, + "loss/logits": 0.21300601959228516, + "loss/reg": 127.591552734375, + "step": 468 + }, + { + "epoch": 0.011725, + "grad_norm": 2.577502965927124, + "grad_norm_var": 0.17224012017982868, + "learning_rate": 0.0001, + "loss": 130.1112, + "loss/crossentropy": 2.673410177230835, + "loss/hidden": 0.0, + "loss/logits": 0.21455711126327515, + "loss/reg": 127.2232666015625, + "step": 469 + }, + { + "epoch": 0.01175, + "grad_norm": 2.620901346206665, + "grad_norm_var": 0.17363936391112228, + "learning_rate": 0.0001, + "loss": 130.2284, + "loss/crossentropy": 3.125420093536377, + "loss/hidden": 0.0, + "loss/logits": 0.23448872566223145, + "loss/reg": 126.86849975585938, + "step": 470 + }, + { + "epoch": 0.011775, + "grad_norm": 2.6767570972442627, + "grad_norm_var": 0.1743635181200638, + "learning_rate": 0.0001, + "loss": 129.5788, + "loss/crossentropy": 2.8606624603271484, + "loss/hidden": 0.0, + "loss/logits": 0.214532732963562, + "loss/reg": 126.50355529785156, + "step": 471 + }, + { + "epoch": 0.0118, + "grad_norm": 2.6148667335510254, + "grad_norm_var": 0.17588189249079184, + "learning_rate": 0.0001, + "loss": 129.3386, + "loss/crossentropy": 2.9896390438079834, + "loss/hidden": 0.0, + "loss/logits": 0.20493671298027039, + "loss/reg": 126.14399719238281, + "step": 472 + }, + { + "epoch": 0.011825, + "grad_norm": 2.431541681289673, + "grad_norm_var": 0.1838967324892555, + "learning_rate": 0.0001, + "loss": 128.7304, + "loss/crossentropy": 2.748108386993408, + "loss/hidden": 0.0, + "loss/logits": 0.20910008251667023, + "loss/reg": 125.7732162475586, + "step": 473 + }, + { + "epoch": 0.01185, + "grad_norm": 2.770341157913208, + "grad_norm_var": 0.18303516965960565, + "learning_rate": 0.0001, + "loss": 128.8167, + "loss/crossentropy": 3.200181245803833, + "loss/hidden": 0.0, + "loss/logits": 0.20696839690208435, + "loss/reg": 125.40956115722656, + "step": 474 + }, + { + "epoch": 0.011875, + "grad_norm": 2.664780378341675, + "grad_norm_var": 0.1831074521196359, + "learning_rate": 0.0001, + "loss": 128.242, + "loss/crossentropy": 2.969964027404785, + "loss/hidden": 0.0, + "loss/logits": 0.22718313336372375, + "loss/reg": 125.04483032226562, + "step": 475 + }, + { + "epoch": 0.0119, + "grad_norm": 2.510708808898926, + "grad_norm_var": 0.17432457651303418, + "learning_rate": 0.0001, + "loss": 127.4987, + "loss/crossentropy": 2.6007182598114014, + "loss/hidden": 0.0, + "loss/logits": 0.21277430653572083, + "loss/reg": 124.68523406982422, + "step": 476 + }, + { + "epoch": 0.011925, + "grad_norm": 2.9702818393707275, + "grad_norm_var": 0.17474036873515666, + "learning_rate": 0.0001, + "loss": 127.41, + "loss/crossentropy": 2.86385178565979, + "loss/hidden": 0.0, + "loss/logits": 0.2170620560646057, + "loss/reg": 124.32904052734375, + "step": 477 + }, + { + "epoch": 0.01195, + "grad_norm": 2.6219518184661865, + "grad_norm_var": 0.17489188976909203, + "learning_rate": 0.0001, + "loss": 126.9219, + "loss/crossentropy": 2.7511582374572754, + "loss/hidden": 0.0, + "loss/logits": 0.2034904807806015, + "loss/reg": 123.96720886230469, + "step": 478 + }, + { + "epoch": 0.011975, + "grad_norm": 2.599919080734253, + "grad_norm_var": 0.17277049923038704, + "learning_rate": 0.0001, + "loss": 126.5413, + "loss/crossentropy": 2.7556185722351074, + "loss/hidden": 0.0, + "loss/logits": 0.1808776557445526, + "loss/reg": 123.60482025146484, + "step": 479 + }, + { + "epoch": 0.012, + "grad_norm": 2.5657715797424316, + "grad_norm_var": 0.17202413016778048, + "learning_rate": 0.0001, + "loss": 126.311, + "loss/crossentropy": 2.8689675331115723, + "loss/hidden": 0.0, + "loss/logits": 0.20293821394443512, + "loss/reg": 123.23907470703125, + "step": 480 + }, + { + "epoch": 0.012025, + "grad_norm": 3.2952754497528076, + "grad_norm_var": 0.04112811192426212, + "learning_rate": 0.0001, + "loss": 125.9246, + "loss/crossentropy": 2.818702220916748, + "loss/hidden": 0.0, + "loss/logits": 0.2267230898141861, + "loss/reg": 122.87913513183594, + "step": 481 + }, + { + "epoch": 0.01205, + "grad_norm": 2.615551233291626, + "grad_norm_var": 0.040825667865743515, + "learning_rate": 0.0001, + "loss": 125.7597, + "loss/crossentropy": 3.017942428588867, + "loss/hidden": 0.0, + "loss/logits": 0.21883933246135712, + "loss/reg": 122.52295684814453, + "step": 482 + }, + { + "epoch": 0.012075, + "grad_norm": 3.4193038940429688, + "grad_norm_var": 0.07439346615546445, + "learning_rate": 0.0001, + "loss": 125.1558, + "loss/crossentropy": 2.7724950313568115, + "loss/hidden": 0.0, + "loss/logits": 0.21510450541973114, + "loss/reg": 122.16816711425781, + "step": 483 + }, + { + "epoch": 0.0121, + "grad_norm": 2.505560874938965, + "grad_norm_var": 0.07751650924940326, + "learning_rate": 0.0001, + "loss": 124.927, + "loss/crossentropy": 2.9188194274902344, + "loss/hidden": 0.0, + "loss/logits": 0.19483289122581482, + "loss/reg": 121.81333923339844, + "step": 484 + }, + { + "epoch": 0.012125, + "grad_norm": 2.7361960411071777, + "grad_norm_var": 0.07615337485008998, + "learning_rate": 0.0001, + "loss": 124.5378, + "loss/crossentropy": 2.8456363677978516, + "loss/hidden": 0.0, + "loss/logits": 0.22739849984645844, + "loss/reg": 121.46476745605469, + "step": 485 + }, + { + "epoch": 0.01215, + "grad_norm": 2.5417439937591553, + "grad_norm_var": 0.07765668354199894, + "learning_rate": 0.0001, + "loss": 124.0698, + "loss/crossentropy": 2.7495946884155273, + "loss/hidden": 0.0, + "loss/logits": 0.20217089354991913, + "loss/reg": 121.11808013916016, + "step": 486 + }, + { + "epoch": 0.012175, + "grad_norm": 2.67401385307312, + "grad_norm_var": 0.07767344047614415, + "learning_rate": 0.0001, + "loss": 123.7152, + "loss/crossentropy": 2.7279324531555176, + "loss/hidden": 0.0, + "loss/logits": 0.22579890489578247, + "loss/reg": 120.76143646240234, + "step": 487 + }, + { + "epoch": 0.0122, + "grad_norm": 2.488034248352051, + "grad_norm_var": 0.08047557627683753, + "learning_rate": 0.0001, + "loss": 123.451, + "loss/crossentropy": 2.8445310592651367, + "loss/hidden": 0.0, + "loss/logits": 0.19405901432037354, + "loss/reg": 120.41239929199219, + "step": 488 + }, + { + "epoch": 0.012225, + "grad_norm": 2.5098259449005127, + "grad_norm_var": 0.07791882719567696, + "learning_rate": 0.0001, + "loss": 123.1306, + "loss/crossentropy": 2.8643126487731934, + "loss/hidden": 0.0, + "loss/logits": 0.19319729506969452, + "loss/reg": 120.0730972290039, + "step": 489 + }, + { + "epoch": 0.01225, + "grad_norm": 2.768183469772339, + "grad_norm_var": 0.07790408271164324, + "learning_rate": 0.0001, + "loss": 123.1131, + "loss/crossentropy": 3.1591904163360596, + "loss/hidden": 0.0, + "loss/logits": 0.23094454407691956, + "loss/reg": 119.72293853759766, + "step": 490 + }, + { + "epoch": 0.012275, + "grad_norm": 2.5662379264831543, + "grad_norm_var": 0.0792095113967413, + "learning_rate": 0.0001, + "loss": 122.4756, + "loss/crossentropy": 2.9084203243255615, + "loss/hidden": 0.0, + "loss/logits": 0.19523289799690247, + "loss/reg": 119.37194061279297, + "step": 491 + }, + { + "epoch": 0.0123, + "grad_norm": 2.7122464179992676, + "grad_norm_var": 0.07634484398728673, + "learning_rate": 0.0001, + "loss": 122.0971, + "loss/crossentropy": 2.8523452281951904, + "loss/hidden": 0.0, + "loss/logits": 0.22050230205059052, + "loss/reg": 119.02421569824219, + "step": 492 + }, + { + "epoch": 0.012325, + "grad_norm": 2.6066133975982666, + "grad_norm_var": 0.0726872533289639, + "learning_rate": 0.0001, + "loss": 121.826, + "loss/crossentropy": 2.943951368331909, + "loss/hidden": 0.0, + "loss/logits": 0.2006131410598755, + "loss/reg": 118.68144989013672, + "step": 493 + }, + { + "epoch": 0.01235, + "grad_norm": 2.752058506011963, + "grad_norm_var": 0.07236263717393664, + "learning_rate": 0.0001, + "loss": 121.3462, + "loss/crossentropy": 2.8118808269500732, + "loss/hidden": 0.0, + "loss/logits": 0.19854308664798737, + "loss/reg": 118.33576965332031, + "step": 494 + }, + { + "epoch": 0.012375, + "grad_norm": 2.920879364013672, + "grad_norm_var": 0.07409949102501111, + "learning_rate": 0.0001, + "loss": 120.8552, + "loss/crossentropy": 2.6617374420166016, + "loss/hidden": 0.0, + "loss/logits": 0.19966919720172882, + "loss/reg": 117.99381256103516, + "step": 495 + }, + { + "epoch": 0.0124, + "grad_norm": 2.7351551055908203, + "grad_norm_var": 0.07218718704733244, + "learning_rate": 0.0001, + "loss": 121.014, + "loss/crossentropy": 3.1586992740631104, + "loss/hidden": 0.0, + "loss/logits": 0.20681920647621155, + "loss/reg": 117.6484603881836, + "step": 496 + }, + { + "epoch": 0.012425, + "grad_norm": 2.35911226272583, + "grad_norm_var": 0.05770549480844901, + "learning_rate": 0.0001, + "loss": 120.1416, + "loss/crossentropy": 2.6408603191375732, + "loss/hidden": 0.0, + "loss/logits": 0.19257068634033203, + "loss/reg": 117.30819702148438, + "step": 497 + }, + { + "epoch": 0.01245, + "grad_norm": 2.738931655883789, + "grad_norm_var": 0.057565104717087694, + "learning_rate": 0.0001, + "loss": 119.9577, + "loss/crossentropy": 2.8233439922332764, + "loss/hidden": 0.0, + "loss/logits": 0.17061106860637665, + "loss/reg": 116.96371459960938, + "step": 498 + }, + { + "epoch": 0.012475, + "grad_norm": 3.1137208938598633, + "grad_norm_var": 0.03367133349540812, + "learning_rate": 0.0001, + "loss": 119.923, + "loss/crossentropy": 3.0651209354400635, + "loss/hidden": 0.0, + "loss/logits": 0.23511168360710144, + "loss/reg": 116.62273406982422, + "step": 499 + }, + { + "epoch": 0.0125, + "grad_norm": 2.931697130203247, + "grad_norm_var": 0.03564747630760602, + "learning_rate": 0.0001, + "loss": 119.9291, + "loss/crossentropy": 3.406992197036743, + "loss/hidden": 0.0, + "loss/logits": 0.23726436495780945, + "loss/reg": 116.28487396240234, + "step": 500 + }, + { + "epoch": 0.012525, + "grad_norm": 2.700242280960083, + "grad_norm_var": 0.035541163062665034, + "learning_rate": 0.0001, + "loss": 119.0308, + "loss/crossentropy": 2.8376407623291016, + "loss/hidden": 0.0, + "loss/logits": 0.24376104772090912, + "loss/reg": 115.94940948486328, + "step": 501 + }, + { + "epoch": 0.01255, + "grad_norm": 2.5305213928222656, + "grad_norm_var": 0.03577823695906375, + "learning_rate": 0.0001, + "loss": 118.5299, + "loss/crossentropy": 2.7097437381744385, + "loss/hidden": 0.0, + "loss/logits": 0.21053358912467957, + "loss/reg": 115.60960388183594, + "step": 502 + }, + { + "epoch": 0.012575, + "grad_norm": 2.849966526031494, + "grad_norm_var": 0.03723922016397386, + "learning_rate": 0.0001, + "loss": 118.188, + "loss/crossentropy": 2.718074083328247, + "loss/hidden": 0.0, + "loss/logits": 0.20146432518959045, + "loss/reg": 115.26842498779297, + "step": 503 + }, + { + "epoch": 0.0126, + "grad_norm": 6.95852518081665, + "grad_norm_var": 1.1568663516812001, + "learning_rate": 0.0001, + "loss": 118.1133, + "loss/crossentropy": 2.935373306274414, + "loss/hidden": 0.0, + "loss/logits": 0.23765507340431213, + "loss/reg": 114.94031524658203, + "step": 504 + }, + { + "epoch": 0.012625, + "grad_norm": 2.5411369800567627, + "grad_norm_var": 1.1549454537059127, + "learning_rate": 0.0001, + "loss": 117.2537, + "loss/crossentropy": 2.4439382553100586, + "loss/hidden": 0.0, + "loss/logits": 0.19584742188453674, + "loss/reg": 114.61389923095703, + "step": 505 + }, + { + "epoch": 0.01265, + "grad_norm": 2.5562095642089844, + "grad_norm_var": 1.1639262533207444, + "learning_rate": 0.0001, + "loss": 117.1436, + "loss/crossentropy": 2.656878709793091, + "loss/hidden": 0.0, + "loss/logits": 0.20227234065532684, + "loss/reg": 114.28450012207031, + "step": 506 + }, + { + "epoch": 0.012675, + "grad_norm": 2.452930212020874, + "grad_norm_var": 1.1708788671982782, + "learning_rate": 0.0001, + "loss": 116.7552, + "loss/crossentropy": 2.6194908618927, + "loss/hidden": 0.0, + "loss/logits": 0.18559934198856354, + "loss/reg": 113.95010375976562, + "step": 507 + }, + { + "epoch": 0.0127, + "grad_norm": 2.600403308868408, + "grad_norm_var": 1.1754484294589225, + "learning_rate": 0.0001, + "loss": 116.878, + "loss/crossentropy": 3.047492504119873, + "loss/hidden": 0.0, + "loss/logits": 0.21343189477920532, + "loss/reg": 113.61707305908203, + "step": 508 + }, + { + "epoch": 0.012725, + "grad_norm": 2.8134710788726807, + "grad_norm_var": 1.1683965532079448, + "learning_rate": 0.0001, + "loss": 116.1436, + "loss/crossentropy": 2.6284308433532715, + "loss/hidden": 0.0, + "loss/logits": 0.22599661350250244, + "loss/reg": 113.28915405273438, + "step": 509 + }, + { + "epoch": 0.01275, + "grad_norm": 3.0693750381469727, + "grad_norm_var": 1.1653763573131297, + "learning_rate": 0.0001, + "loss": 116.0373, + "loss/crossentropy": 2.8555266857147217, + "loss/hidden": 0.0, + "loss/logits": 0.21752798557281494, + "loss/reg": 112.96427154541016, + "step": 510 + }, + { + "epoch": 0.012775, + "grad_norm": 3.6787264347076416, + "grad_norm_var": 1.1940838877816609, + "learning_rate": 0.0001, + "loss": 115.4654, + "loss/crossentropy": 2.5687825679779053, + "loss/hidden": 0.0, + "loss/logits": 0.2617979049682617, + "loss/reg": 112.63484191894531, + "step": 511 + }, + { + "epoch": 0.0128, + "grad_norm": 2.7873494625091553, + "grad_norm_var": 1.192136957506784, + "learning_rate": 0.0001, + "loss": 115.1653, + "loss/crossentropy": 2.6631510257720947, + "loss/hidden": 0.0, + "loss/logits": 0.191485196352005, + "loss/reg": 112.31067657470703, + "step": 512 + }, + { + "epoch": 0.012825, + "grad_norm": 2.6256515979766846, + "grad_norm_var": 1.1722853783887095, + "learning_rate": 0.0001, + "loss": 114.9084, + "loss/crossentropy": 2.7325098514556885, + "loss/hidden": 0.0, + "loss/logits": 0.19808584451675415, + "loss/reg": 111.97781372070312, + "step": 513 + }, + { + "epoch": 0.01285, + "grad_norm": 2.967942237854004, + "grad_norm_var": 1.1657807662503947, + "learning_rate": 0.0001, + "loss": 114.5064, + "loss/crossentropy": 2.6529791355133057, + "loss/hidden": 0.0, + "loss/logits": 0.20329859852790833, + "loss/reg": 111.650146484375, + "step": 514 + }, + { + "epoch": 0.012875, + "grad_norm": 2.934296131134033, + "grad_norm_var": 1.166833422533542, + "learning_rate": 0.0001, + "loss": 114.5007, + "loss/crossentropy": 2.951188087463379, + "loss/hidden": 0.0, + "loss/logits": 0.22600007057189941, + "loss/reg": 111.32347869873047, + "step": 515 + }, + { + "epoch": 0.0129, + "grad_norm": 2.6087300777435303, + "grad_norm_var": 1.178981137512823, + "learning_rate": 0.0001, + "loss": 114.303, + "loss/crossentropy": 3.0892579555511475, + "loss/hidden": 0.0, + "loss/logits": 0.219014972448349, + "loss/reg": 110.99468994140625, + "step": 516 + }, + { + "epoch": 0.012925, + "grad_norm": 2.6592049598693848, + "grad_norm_var": 1.1809575567663138, + "learning_rate": 0.0001, + "loss": 113.656, + "loss/crossentropy": 2.759434461593628, + "loss/hidden": 0.0, + "loss/logits": 0.23085039854049683, + "loss/reg": 110.66567993164062, + "step": 517 + }, + { + "epoch": 0.01295, + "grad_norm": 2.7460856437683105, + "grad_norm_var": 1.169228407645687, + "learning_rate": 0.0001, + "loss": 113.58, + "loss/crossentropy": 3.019660472869873, + "loss/hidden": 0.0, + "loss/logits": 0.22078245878219604, + "loss/reg": 110.3395767211914, + "step": 518 + }, + { + "epoch": 0.012975, + "grad_norm": 2.9937329292297363, + "grad_norm_var": 1.1666258859232923, + "learning_rate": 0.0001, + "loss": 112.7048, + "loss/crossentropy": 2.477316379547119, + "loss/hidden": 0.0, + "loss/logits": 0.21349506080150604, + "loss/reg": 110.01399993896484, + "step": 519 + }, + { + "epoch": 0.013, + "grad_norm": 2.8256266117095947, + "grad_norm_var": 0.0870475905341967, + "learning_rate": 0.0001, + "loss": 112.8148, + "loss/crossentropy": 2.904346466064453, + "loss/hidden": 0.0, + "loss/logits": 0.22682815790176392, + "loss/reg": 109.68363952636719, + "step": 520 + }, + { + "epoch": 0.013025, + "grad_norm": 2.6826443672180176, + "grad_norm_var": 0.08334319224761823, + "learning_rate": 0.0001, + "loss": 112.4453, + "loss/crossentropy": 2.8740198612213135, + "loss/hidden": 0.0, + "loss/logits": 0.21089796721935272, + "loss/reg": 109.36034393310547, + "step": 521 + }, + { + "epoch": 0.01305, + "grad_norm": 2.876612424850464, + "grad_norm_var": 0.07880413790800654, + "learning_rate": 0.0001, + "loss": 112.014, + "loss/crossentropy": 2.752030372619629, + "loss/hidden": 0.0, + "loss/logits": 0.22804582118988037, + "loss/reg": 109.03395080566406, + "step": 522 + }, + { + "epoch": 0.013075, + "grad_norm": 2.6571719646453857, + "grad_norm_var": 0.07107003720365886, + "learning_rate": 0.0001, + "loss": 112.0514, + "loss/crossentropy": 3.134460926055908, + "loss/hidden": 0.0, + "loss/logits": 0.20280694961547852, + "loss/reg": 108.7141342163086, + "step": 523 + }, + { + "epoch": 0.0131, + "grad_norm": 2.6310062408447266, + "grad_norm_var": 0.07012872943871476, + "learning_rate": 0.0001, + "loss": 111.5231, + "loss/crossentropy": 2.899681329727173, + "loss/hidden": 0.0, + "loss/logits": 0.2234225869178772, + "loss/reg": 108.39997863769531, + "step": 524 + }, + { + "epoch": 0.013125, + "grad_norm": 2.8861429691314697, + "grad_norm_var": 0.07013051549444356, + "learning_rate": 0.0001, + "loss": 111.3517, + "loss/crossentropy": 3.016164779663086, + "loss/hidden": 0.0, + "loss/logits": 0.2486555576324463, + "loss/reg": 108.08689880371094, + "step": 525 + }, + { + "epoch": 0.01315, + "grad_norm": 11.108626365661621, + "grad_norm_var": 4.342596426812534, + "learning_rate": 0.0001, + "loss": 111.424, + "loss/crossentropy": 3.3841826915740967, + "loss/hidden": 0.0, + "loss/logits": 0.27035826444625854, + "loss/reg": 107.76946258544922, + "step": 526 + }, + { + "epoch": 0.013175, + "grad_norm": 2.765962600708008, + "grad_norm_var": 4.355189952794281, + "learning_rate": 0.0001, + "loss": 110.3478, + "loss/crossentropy": 2.66182279586792, + "loss/hidden": 0.0, + "loss/logits": 0.2297273576259613, + "loss/reg": 107.45628356933594, + "step": 527 + }, + { + "epoch": 0.0132, + "grad_norm": 3.090799570083618, + "grad_norm_var": 4.340312503643294, + "learning_rate": 0.0001, + "loss": 110.4536, + "loss/crossentropy": 3.0606637001037598, + "loss/hidden": 0.0, + "loss/logits": 0.2523239552974701, + "loss/reg": 107.14060974121094, + "step": 528 + }, + { + "epoch": 0.013225, + "grad_norm": 2.63191819190979, + "grad_norm_var": 4.339737919036126, + "learning_rate": 0.0001, + "loss": 109.6669, + "loss/crossentropy": 2.6498641967773438, + "loss/hidden": 0.0, + "loss/logits": 0.1968306005001068, + "loss/reg": 106.8201904296875, + "step": 529 + }, + { + "epoch": 0.01325, + "grad_norm": 2.5872347354888916, + "grad_norm_var": 4.366497639190141, + "learning_rate": 0.0001, + "loss": 109.3358, + "loss/crossentropy": 2.615196466445923, + "loss/hidden": 0.0, + "loss/logits": 0.21458838880062103, + "loss/reg": 106.50599670410156, + "step": 530 + }, + { + "epoch": 0.013275, + "grad_norm": 3.557237148284912, + "grad_norm_var": 4.360969037365885, + "learning_rate": 0.0001, + "loss": 109.2467, + "loss/crossentropy": 2.8124053478240967, + "loss/hidden": 0.0, + "loss/logits": 0.2458515763282776, + "loss/reg": 106.18840789794922, + "step": 531 + }, + { + "epoch": 0.0133, + "grad_norm": 9.031005859375, + "grad_norm_var": 6.319656798143334, + "learning_rate": 0.0001, + "loss": 108.9254, + "loss/crossentropy": 2.764629602432251, + "loss/hidden": 0.0, + "loss/logits": 0.2858869433403015, + "loss/reg": 105.87490844726562, + "step": 532 + }, + { + "epoch": 0.013325, + "grad_norm": 3.397695302963257, + "grad_norm_var": 6.247992121947124, + "learning_rate": 0.0001, + "loss": 108.913, + "loss/crossentropy": 3.053879737854004, + "loss/hidden": 0.0, + "loss/logits": 0.2985405921936035, + "loss/reg": 105.5605697631836, + "step": 533 + }, + { + "epoch": 0.01335, + "grad_norm": 5.6299591064453125, + "grad_norm_var": 6.370482684906529, + "learning_rate": 0.0001, + "loss": 108.2695, + "loss/crossentropy": 2.793619155883789, + "loss/hidden": 0.0, + "loss/logits": 0.2356250137090683, + "loss/reg": 105.24028778076172, + "step": 534 + }, + { + "epoch": 0.013375, + "grad_norm": 3.0469837188720703, + "grad_norm_var": 6.363802254153521, + "learning_rate": 0.0001, + "loss": 108.5512, + "loss/crossentropy": 3.3861045837402344, + "loss/hidden": 0.0, + "loss/logits": 0.23634299635887146, + "loss/reg": 104.92872619628906, + "step": 535 + }, + { + "epoch": 0.0134, + "grad_norm": 2.819078207015991, + "grad_norm_var": 6.364797923503401, + "learning_rate": 0.0001, + "loss": 107.8459, + "loss/crossentropy": 2.994354724884033, + "loss/hidden": 0.0, + "loss/logits": 0.23442190885543823, + "loss/reg": 104.6171646118164, + "step": 536 + }, + { + "epoch": 0.013425, + "grad_norm": 5.84004545211792, + "grad_norm_var": 6.449067359728785, + "learning_rate": 0.0001, + "loss": 107.6525, + "loss/crossentropy": 3.0567657947540283, + "loss/hidden": 0.0, + "loss/logits": 0.2871782183647156, + "loss/reg": 104.30860137939453, + "step": 537 + }, + { + "epoch": 0.01345, + "grad_norm": 2.5338470935821533, + "grad_norm_var": 6.515056601417896, + "learning_rate": 0.0001, + "loss": 106.7596, + "loss/crossentropy": 2.5571489334106445, + "loss/hidden": 0.0, + "loss/logits": 0.20038628578186035, + "loss/reg": 104.00208282470703, + "step": 538 + }, + { + "epoch": 0.013475, + "grad_norm": 2.7171146869659424, + "grad_norm_var": 6.503442502818018, + "learning_rate": 0.0001, + "loss": 106.7376, + "loss/crossentropy": 2.8135974407196045, + "loss/hidden": 0.0, + "loss/logits": 0.22917550802230835, + "loss/reg": 103.69479370117188, + "step": 539 + }, + { + "epoch": 0.0135, + "grad_norm": 6.479078769683838, + "grad_norm_var": 6.653581035332929, + "learning_rate": 0.0001, + "loss": 106.5785, + "loss/crossentropy": 2.8556628227233887, + "loss/hidden": 0.0, + "loss/logits": 0.33066555857658386, + "loss/reg": 103.3922119140625, + "step": 540 + }, + { + "epoch": 0.013525, + "grad_norm": 2.6559464931488037, + "grad_norm_var": 6.702825655017004, + "learning_rate": 0.0001, + "loss": 106.0303, + "loss/crossentropy": 2.7272911071777344, + "loss/hidden": 0.0, + "loss/logits": 0.21066486835479736, + "loss/reg": 103.09235382080078, + "step": 541 + }, + { + "epoch": 0.01355, + "grad_norm": 2.68630313873291, + "grad_norm_var": 3.5670498293655744, + "learning_rate": 0.0001, + "loss": 105.6865, + "loss/crossentropy": 2.6875898838043213, + "loss/hidden": 0.0, + "loss/logits": 0.20091715455055237, + "loss/reg": 102.79798126220703, + "step": 542 + }, + { + "epoch": 0.013575, + "grad_norm": 2.6095407009124756, + "grad_norm_var": 3.59101884290791, + "learning_rate": 0.0001, + "loss": 105.3207, + "loss/crossentropy": 2.607323408126831, + "loss/hidden": 0.0, + "loss/logits": 0.20690517127513885, + "loss/reg": 102.50646209716797, + "step": 543 + }, + { + "epoch": 0.0136, + "grad_norm": 2.6883742809295654, + "grad_norm_var": 3.6409168446953246, + "learning_rate": 0.0001, + "loss": 105.2911, + "loss/crossentropy": 2.8654534816741943, + "loss/hidden": 0.0, + "loss/logits": 0.21081852912902832, + "loss/reg": 102.21478271484375, + "step": 544 + }, + { + "epoch": 0.013625, + "grad_norm": 2.5874383449554443, + "grad_norm_var": 3.648009256619466, + "learning_rate": 0.0001, + "loss": 104.9956, + "loss/crossentropy": 2.858520984649658, + "loss/hidden": 0.0, + "loss/logits": 0.21754832565784454, + "loss/reg": 101.91951751708984, + "step": 545 + }, + { + "epoch": 0.01365, + "grad_norm": 2.54441499710083, + "grad_norm_var": 3.6550717570432996, + "learning_rate": 0.0001, + "loss": 104.3815, + "loss/crossentropy": 2.5437026023864746, + "loss/hidden": 0.0, + "loss/logits": 0.2128550112247467, + "loss/reg": 101.62492370605469, + "step": 546 + }, + { + "epoch": 0.013675, + "grad_norm": 2.422410488128662, + "grad_norm_var": 3.7725212936238335, + "learning_rate": 0.0001, + "loss": 104.2026, + "loss/crossentropy": 2.678537607192993, + "loss/hidden": 0.0, + "loss/logits": 0.19898445904254913, + "loss/reg": 101.32511138916016, + "step": 547 + }, + { + "epoch": 0.0137, + "grad_norm": 2.816225051879883, + "grad_norm_var": 1.7943565080708708, + "learning_rate": 0.0001, + "loss": 104.3567, + "loss/crossentropy": 3.10886549949646, + "loss/hidden": 0.0, + "loss/logits": 0.22006894648075104, + "loss/reg": 101.02771759033203, + "step": 548 + }, + { + "epoch": 0.013725, + "grad_norm": 2.9122800827026367, + "grad_norm_var": 1.805488475198342, + "learning_rate": 0.0001, + "loss": 103.6283, + "loss/crossentropy": 2.6595304012298584, + "loss/hidden": 0.0, + "loss/logits": 0.23327180743217468, + "loss/reg": 100.73548126220703, + "step": 549 + }, + { + "epoch": 0.01375, + "grad_norm": 2.715149402618408, + "grad_norm_var": 1.4355691908428239, + "learning_rate": 0.0001, + "loss": 103.5837, + "loss/crossentropy": 2.9111499786376953, + "loss/hidden": 0.0, + "loss/logits": 0.2255546748638153, + "loss/reg": 100.4470443725586, + "step": 550 + }, + { + "epoch": 0.013775, + "grad_norm": 2.6600630283355713, + "grad_norm_var": 1.4491900778787985, + "learning_rate": 0.0001, + "loss": 102.9596, + "loss/crossentropy": 2.591811180114746, + "loss/hidden": 0.0, + "loss/logits": 0.2164371758699417, + "loss/reg": 100.15138244628906, + "step": 551 + }, + { + "epoch": 0.0138, + "grad_norm": 2.811176061630249, + "grad_norm_var": 1.4494957147530347, + "learning_rate": 0.0001, + "loss": 102.7969, + "loss/crossentropy": 2.7154479026794434, + "loss/hidden": 0.0, + "loss/logits": 0.22633354365825653, + "loss/reg": 99.85511779785156, + "step": 552 + }, + { + "epoch": 0.013825, + "grad_norm": 2.5404551029205322, + "grad_norm_var": 0.9266648578686081, + "learning_rate": 0.0001, + "loss": 102.5948, + "loss/crossentropy": 2.83707857131958, + "loss/hidden": 0.0, + "loss/logits": 0.19505436718463898, + "loss/reg": 99.56267547607422, + "step": 553 + }, + { + "epoch": 0.01385, + "grad_norm": 3.074483871459961, + "grad_norm_var": 0.9186296960512579, + "learning_rate": 0.0001, + "loss": 102.4509, + "loss/crossentropy": 2.912346363067627, + "loss/hidden": 0.0, + "loss/logits": 0.2622039020061493, + "loss/reg": 99.27632904052734, + "step": 554 + }, + { + "epoch": 0.013875, + "grad_norm": 2.686178207397461, + "grad_norm_var": 0.9195780649456933, + "learning_rate": 0.0001, + "loss": 102.0401, + "loss/crossentropy": 2.8341047763824463, + "loss/hidden": 0.0, + "loss/logits": 0.21929171681404114, + "loss/reg": 98.98668670654297, + "step": 555 + }, + { + "epoch": 0.0139, + "grad_norm": 2.656536340713501, + "grad_norm_var": 0.024253446700591517, + "learning_rate": 0.0001, + "loss": 101.5869, + "loss/crossentropy": 2.6577670574188232, + "loss/hidden": 0.0, + "loss/logits": 0.23103003203868866, + "loss/reg": 98.69813537597656, + "step": 556 + }, + { + "epoch": 0.013925, + "grad_norm": 2.5510590076446533, + "grad_norm_var": 0.025440849818042465, + "learning_rate": 0.0001, + "loss": 100.9329, + "loss/crossentropy": 2.326843738555908, + "loss/hidden": 0.0, + "loss/logits": 0.18946564197540283, + "loss/reg": 98.41661071777344, + "step": 557 + }, + { + "epoch": 0.01395, + "grad_norm": 2.6039011478424072, + "grad_norm_var": 0.02585234669650897, + "learning_rate": 0.0001, + "loss": 101.0391, + "loss/crossentropy": 2.6925387382507324, + "loss/hidden": 0.0, + "loss/logits": 0.2089564949274063, + "loss/reg": 98.13763427734375, + "step": 558 + }, + { + "epoch": 0.013975, + "grad_norm": 2.4973230361938477, + "grad_norm_var": 0.027693340503882762, + "learning_rate": 0.0001, + "loss": 100.7989, + "loss/crossentropy": 2.747386932373047, + "loss/hidden": 0.0, + "loss/logits": 0.2009141445159912, + "loss/reg": 97.85063934326172, + "step": 559 + }, + { + "epoch": 0.014, + "grad_norm": 2.5563371181488037, + "grad_norm_var": 0.028511705384668556, + "learning_rate": 0.0001, + "loss": 100.641, + "loss/crossentropy": 2.8731026649475098, + "loss/hidden": 0.0, + "loss/logits": 0.20369890332221985, + "loss/reg": 97.56423950195312, + "step": 560 + }, + { + "epoch": 0.014025, + "grad_norm": 2.81292724609375, + "grad_norm_var": 0.029366212464935634, + "learning_rate": 0.0001, + "loss": 100.1638, + "loss/crossentropy": 2.6780025959014893, + "loss/hidden": 0.0, + "loss/logits": 0.20065699517726898, + "loss/reg": 97.28515625, + "step": 561 + }, + { + "epoch": 0.01405, + "grad_norm": 2.867063522338867, + "grad_norm_var": 0.03009105233082489, + "learning_rate": 0.0001, + "loss": 99.9774, + "loss/crossentropy": 2.7445759773254395, + "loss/hidden": 0.0, + "loss/logits": 0.2291974425315857, + "loss/reg": 97.00367736816406, + "step": 562 + }, + { + "epoch": 0.014075, + "grad_norm": 2.4345862865448, + "grad_norm_var": 0.02965133530149539, + "learning_rate": 0.0001, + "loss": 99.6903, + "loss/crossentropy": 2.768172264099121, + "loss/hidden": 0.0, + "loss/logits": 0.19444233179092407, + "loss/reg": 96.72771453857422, + "step": 563 + }, + { + "epoch": 0.0141, + "grad_norm": 2.8722984790802, + "grad_norm_var": 0.0307187897240811, + "learning_rate": 0.0001, + "loss": 99.6226, + "loss/crossentropy": 2.9429454803466797, + "loss/hidden": 0.0, + "loss/logits": 0.2194785326719284, + "loss/reg": 96.46016693115234, + "step": 564 + }, + { + "epoch": 0.014125, + "grad_norm": 2.9882256984710693, + "grad_norm_var": 0.03319604425916699, + "learning_rate": 0.0001, + "loss": 99.6137, + "loss/crossentropy": 3.175783395767212, + "loss/hidden": 0.0, + "loss/logits": 0.24568451941013336, + "loss/reg": 96.19220733642578, + "step": 565 + }, + { + "epoch": 0.01415, + "grad_norm": 2.822582721710205, + "grad_norm_var": 0.03402003702614896, + "learning_rate": 0.0001, + "loss": 99.1781, + "loss/crossentropy": 3.020627021789551, + "loss/hidden": 0.0, + "loss/logits": 0.2289256751537323, + "loss/reg": 95.92849731445312, + "step": 566 + }, + { + "epoch": 0.014175, + "grad_norm": 2.7644307613372803, + "grad_norm_var": 0.03394051714071698, + "learning_rate": 0.0001, + "loss": 98.6117, + "loss/crossentropy": 2.714923858642578, + "loss/hidden": 0.0, + "loss/logits": 0.2449963539838791, + "loss/reg": 95.65177154541016, + "step": 567 + }, + { + "epoch": 0.0142, + "grad_norm": 2.699716091156006, + "grad_norm_var": 0.03338014972604976, + "learning_rate": 0.0001, + "loss": 98.4869, + "loss/crossentropy": 2.897766351699829, + "loss/hidden": 0.0, + "loss/logits": 0.2104054093360901, + "loss/reg": 95.37874603271484, + "step": 568 + }, + { + "epoch": 0.014225, + "grad_norm": 2.8579864501953125, + "grad_norm_var": 0.03232346391338676, + "learning_rate": 0.0001, + "loss": 98.2656, + "loss/crossentropy": 2.9202752113342285, + "loss/hidden": 0.0, + "loss/logits": 0.23916882276535034, + "loss/reg": 95.10614013671875, + "step": 569 + }, + { + "epoch": 0.01425, + "grad_norm": 2.753019332885742, + "grad_norm_var": 0.024192763356738093, + "learning_rate": 0.0001, + "loss": 98.0069, + "loss/crossentropy": 2.944240093231201, + "loss/hidden": 0.0, + "loss/logits": 0.22491341829299927, + "loss/reg": 94.8377914428711, + "step": 570 + }, + { + "epoch": 0.014275, + "grad_norm": 2.60459566116333, + "grad_norm_var": 0.02491149826441017, + "learning_rate": 0.0001, + "loss": 97.608, + "loss/crossentropy": 2.819348096847534, + "loss/hidden": 0.0, + "loss/logits": 0.22620517015457153, + "loss/reg": 94.56243133544922, + "step": 571 + }, + { + "epoch": 0.0143, + "grad_norm": 2.870256185531616, + "grad_norm_var": 0.02627376883378929, + "learning_rate": 0.0001, + "loss": 97.2411, + "loss/crossentropy": 2.742431879043579, + "loss/hidden": 0.0, + "loss/logits": 0.21404124796390533, + "loss/reg": 94.28459167480469, + "step": 572 + }, + { + "epoch": 0.014325, + "grad_norm": 2.3389241695404053, + "grad_norm_var": 0.033928965438431644, + "learning_rate": 0.0001, + "loss": 96.7127, + "loss/crossentropy": 2.517883777618408, + "loss/hidden": 0.0, + "loss/logits": 0.19041433930397034, + "loss/reg": 94.0043716430664, + "step": 573 + }, + { + "epoch": 0.01435, + "grad_norm": 2.59843111038208, + "grad_norm_var": 0.034007496068778426, + "learning_rate": 0.0001, + "loss": 96.8607, + "loss/crossentropy": 2.9151978492736816, + "loss/hidden": 0.0, + "loss/logits": 0.21700671315193176, + "loss/reg": 93.72846221923828, + "step": 574 + }, + { + "epoch": 0.014375, + "grad_norm": 3.3285093307495117, + "grad_norm_var": 0.05376453050990312, + "learning_rate": 0.0001, + "loss": 96.8123, + "loss/crossentropy": 3.1045849323272705, + "loss/hidden": 0.0, + "loss/logits": 0.2494984120130539, + "loss/reg": 93.45817565917969, + "step": 575 + }, + { + "epoch": 0.0144, + "grad_norm": 2.6628782749176025, + "grad_norm_var": 0.0515720576900262, + "learning_rate": 0.0001, + "loss": 96.3792, + "loss/crossentropy": 2.955598831176758, + "loss/hidden": 0.0, + "loss/logits": 0.2415456622838974, + "loss/reg": 93.18202209472656, + "step": 576 + }, + { + "epoch": 0.014425, + "grad_norm": 4.186471939086914, + "grad_norm_var": 0.1778464831949935, + "learning_rate": 0.0001, + "loss": 96.081, + "loss/crossentropy": 2.8772761821746826, + "loss/hidden": 0.0, + "loss/logits": 0.2912898063659668, + "loss/reg": 92.9124526977539, + "step": 577 + }, + { + "epoch": 0.01445, + "grad_norm": 2.668438196182251, + "grad_norm_var": 0.17994305561740684, + "learning_rate": 0.0001, + "loss": 95.7919, + "loss/crossentropy": 2.9419538974761963, + "loss/hidden": 0.0, + "loss/logits": 0.21084845066070557, + "loss/reg": 92.63912200927734, + "step": 578 + }, + { + "epoch": 0.014475, + "grad_norm": 2.549457311630249, + "grad_norm_var": 0.17454752775228427, + "learning_rate": 0.0001, + "loss": 95.1398, + "loss/crossentropy": 2.5472424030303955, + "loss/hidden": 0.0, + "loss/logits": 0.2210979163646698, + "loss/reg": 92.37150573730469, + "step": 579 + }, + { + "epoch": 0.0145, + "grad_norm": 3.0102109909057617, + "grad_norm_var": 0.17618512136317932, + "learning_rate": 0.0001, + "loss": 95.1484, + "loss/crossentropy": 2.8119232654571533, + "loss/hidden": 0.0, + "loss/logits": 0.2312673032283783, + "loss/reg": 92.10520935058594, + "step": 580 + }, + { + "epoch": 0.014525, + "grad_norm": 2.673635721206665, + "grad_norm_var": 0.17684562367797388, + "learning_rate": 0.0001, + "loss": 94.916, + "loss/crossentropy": 2.840714693069458, + "loss/hidden": 0.0, + "loss/logits": 0.24130380153656006, + "loss/reg": 91.83395385742188, + "step": 581 + }, + { + "epoch": 0.01455, + "grad_norm": 2.600407361984253, + "grad_norm_var": 0.18035328363555816, + "learning_rate": 0.0001, + "loss": 94.4715, + "loss/crossentropy": 2.7048165798187256, + "loss/hidden": 0.0, + "loss/logits": 0.202452152967453, + "loss/reg": 91.56422424316406, + "step": 582 + }, + { + "epoch": 0.014575, + "grad_norm": 3.064331531524658, + "grad_norm_var": 0.18363414575108336, + "learning_rate": 0.0001, + "loss": 94.3897, + "loss/crossentropy": 2.871046304702759, + "loss/hidden": 0.0, + "loss/logits": 0.21794039011001587, + "loss/reg": 91.30074310302734, + "step": 583 + }, + { + "epoch": 0.0146, + "grad_norm": 2.4271910190582275, + "grad_norm_var": 0.19343539696492276, + "learning_rate": 0.0001, + "loss": 94.3164, + "loss/crossentropy": 3.068648099899292, + "loss/hidden": 0.0, + "loss/logits": 0.20914003252983093, + "loss/reg": 91.03858947753906, + "step": 584 + }, + { + "epoch": 0.014625, + "grad_norm": 2.773268699645996, + "grad_norm_var": 0.1935076502725669, + "learning_rate": 0.0001, + "loss": 93.7491, + "loss/crossentropy": 2.722926378250122, + "loss/hidden": 0.0, + "loss/logits": 0.24941931664943695, + "loss/reg": 90.77677154541016, + "step": 585 + }, + { + "epoch": 0.01465, + "grad_norm": 2.473400592803955, + "grad_norm_var": 0.2008682828648034, + "learning_rate": 0.0001, + "loss": 93.6203, + "loss/crossentropy": 2.8903560638427734, + "loss/hidden": 0.0, + "loss/logits": 0.21103140711784363, + "loss/reg": 90.51893615722656, + "step": 586 + }, + { + "epoch": 0.014675, + "grad_norm": 2.6214702129364014, + "grad_norm_var": 0.20044215566161913, + "learning_rate": 0.0001, + "loss": 93.2864, + "loss/crossentropy": 2.8173437118530273, + "loss/hidden": 0.0, + "loss/logits": 0.21141797304153442, + "loss/reg": 90.25767517089844, + "step": 587 + }, + { + "epoch": 0.0147, + "grad_norm": 2.776019811630249, + "grad_norm_var": 0.20015155933538128, + "learning_rate": 0.0001, + "loss": 92.9381, + "loss/crossentropy": 2.7188355922698975, + "loss/hidden": 0.0, + "loss/logits": 0.21627959609031677, + "loss/reg": 90.00298309326172, + "step": 588 + }, + { + "epoch": 0.014725, + "grad_norm": 2.63840389251709, + "grad_norm_var": 0.18746319834137826, + "learning_rate": 0.0001, + "loss": 92.7113, + "loss/crossentropy": 2.7562100887298584, + "loss/hidden": 0.0, + "loss/logits": 0.2082541435956955, + "loss/reg": 89.74687957763672, + "step": 589 + }, + { + "epoch": 0.01475, + "grad_norm": 2.835721015930176, + "grad_norm_var": 0.1841056372587597, + "learning_rate": 0.0001, + "loss": 92.324, + "loss/crossentropy": 2.6325843334198, + "loss/hidden": 0.0, + "loss/logits": 0.20466585457324982, + "loss/reg": 89.4867935180664, + "step": 590 + }, + { + "epoch": 0.014775, + "grad_norm": 2.687760829925537, + "grad_norm_var": 0.16722875087179906, + "learning_rate": 0.0001, + "loss": 92.2685, + "loss/crossentropy": 2.82861328125, + "loss/hidden": 0.0, + "loss/logits": 0.2116677463054657, + "loss/reg": 89.22821044921875, + "step": 591 + }, + { + "epoch": 0.0148, + "grad_norm": 3.145275354385376, + "grad_norm_var": 0.17356006417378372, + "learning_rate": 0.0001, + "loss": 91.9296, + "loss/crossentropy": 2.7166497707366943, + "loss/hidden": 0.0, + "loss/logits": 0.24187356233596802, + "loss/reg": 88.9710693359375, + "step": 592 + }, + { + "epoch": 0.014825, + "grad_norm": 2.6644723415374756, + "grad_norm_var": 0.04118301322724444, + "learning_rate": 0.0001, + "loss": 91.8205, + "loss/crossentropy": 2.891160249710083, + "loss/hidden": 0.0, + "loss/logits": 0.2127176821231842, + "loss/reg": 88.71666717529297, + "step": 593 + }, + { + "epoch": 0.01485, + "grad_norm": 2.5222256183624268, + "grad_norm_var": 0.043633350924598586, + "learning_rate": 0.0001, + "loss": 91.2693, + "loss/crossentropy": 2.588534355163574, + "loss/hidden": 0.0, + "loss/logits": 0.2142462432384491, + "loss/reg": 88.46653747558594, + "step": 594 + }, + { + "epoch": 0.014875, + "grad_norm": 2.6689634323120117, + "grad_norm_var": 0.04186501943967471, + "learning_rate": 0.0001, + "loss": 91.1498, + "loss/crossentropy": 2.731534957885742, + "loss/hidden": 0.0, + "loss/logits": 0.20442616939544678, + "loss/reg": 88.2138442993164, + "step": 595 + }, + { + "epoch": 0.0149, + "grad_norm": 2.733809471130371, + "grad_norm_var": 0.03608913512671942, + "learning_rate": 0.0001, + "loss": 91.2427, + "loss/crossentropy": 3.0743908882141113, + "loss/hidden": 0.0, + "loss/logits": 0.21326132118701935, + "loss/reg": 87.95504760742188, + "step": 596 + }, + { + "epoch": 0.014925, + "grad_norm": 2.6387839317321777, + "grad_norm_var": 0.03631845228885571, + "learning_rate": 0.0001, + "loss": 90.743, + "loss/crossentropy": 2.8121533393859863, + "loss/hidden": 0.0, + "loss/logits": 0.22556063532829285, + "loss/reg": 87.70523834228516, + "step": 597 + }, + { + "epoch": 0.01495, + "grad_norm": 2.6532163619995117, + "grad_norm_var": 0.035760032396463734, + "learning_rate": 0.0001, + "loss": 90.4519, + "loss/crossentropy": 2.7932353019714355, + "loss/hidden": 0.0, + "loss/logits": 0.20535191893577576, + "loss/reg": 87.45335388183594, + "step": 598 + }, + { + "epoch": 0.014975, + "grad_norm": 2.998858690261841, + "grad_norm_var": 0.03291526795530686, + "learning_rate": 0.0001, + "loss": 90.3378, + "loss/crossentropy": 2.908860206604004, + "loss/hidden": 0.0, + "loss/logits": 0.22954756021499634, + "loss/reg": 87.19943237304688, + "step": 599 + }, + { + "epoch": 0.015, + "grad_norm": 13.023781776428223, + "grad_norm_var": 6.660256756747305, + "learning_rate": 0.0001, + "loss": 90.0128, + "loss/crossentropy": 2.8209877014160156, + "loss/hidden": 0.0, + "loss/logits": 0.2434820979833603, + "loss/reg": 86.94837188720703, + "step": 600 + }, + { + "epoch": 0.015025, + "grad_norm": 3.2308173179626465, + "grad_norm_var": 6.637182891814268, + "learning_rate": 0.0001, + "loss": 89.5445, + "loss/crossentropy": 2.5709166526794434, + "loss/hidden": 0.0, + "loss/logits": 0.27399659156799316, + "loss/reg": 86.69955444335938, + "step": 601 + }, + { + "epoch": 0.01505, + "grad_norm": 2.7746541500091553, + "grad_norm_var": 6.605854606820831, + "learning_rate": 0.0001, + "loss": 89.6479, + "loss/crossentropy": 2.955522060394287, + "loss/hidden": 0.0, + "loss/logits": 0.2408815622329712, + "loss/reg": 86.45153045654297, + "step": 602 + }, + { + "epoch": 0.015075, + "grad_norm": 2.534477472305298, + "grad_norm_var": 6.615513089198629, + "learning_rate": 0.0001, + "loss": 89.5647, + "loss/crossentropy": 3.1383554935455322, + "loss/hidden": 0.0, + "loss/logits": 0.22149553894996643, + "loss/reg": 86.2048110961914, + "step": 603 + }, + { + "epoch": 0.0151, + "grad_norm": 2.6757757663726807, + "grad_norm_var": 6.624587476581763, + "learning_rate": 0.0001, + "loss": 88.9872, + "loss/crossentropy": 2.8011903762817383, + "loss/hidden": 0.0, + "loss/logits": 0.22577175498008728, + "loss/reg": 85.960205078125, + "step": 604 + }, + { + "epoch": 0.015125, + "grad_norm": 2.5399699211120605, + "grad_norm_var": 6.635210790627498, + "learning_rate": 0.0001, + "loss": 88.6121, + "loss/crossentropy": 2.686098337173462, + "loss/hidden": 0.0, + "loss/logits": 0.21132361888885498, + "loss/reg": 85.71470642089844, + "step": 605 + }, + { + "epoch": 0.01515, + "grad_norm": 3.094851016998291, + "grad_norm_var": 6.620065609075882, + "learning_rate": 0.0001, + "loss": 88.5017, + "loss/crossentropy": 2.7985479831695557, + "loss/hidden": 0.0, + "loss/logits": 0.23451220989227295, + "loss/reg": 85.46868896484375, + "step": 606 + }, + { + "epoch": 0.015175, + "grad_norm": 2.8335752487182617, + "grad_norm_var": 6.607319105523461, + "learning_rate": 0.0001, + "loss": 88.5627, + "loss/crossentropy": 3.1135289669036865, + "loss/hidden": 0.0, + "loss/logits": 0.22703945636749268, + "loss/reg": 85.22212219238281, + "step": 607 + }, + { + "epoch": 0.0152, + "grad_norm": 2.805544137954712, + "grad_norm_var": 6.627015267189299, + "learning_rate": 0.0001, + "loss": 88.0827, + "loss/crossentropy": 2.8752803802490234, + "loss/hidden": 0.0, + "loss/logits": 0.22529396414756775, + "loss/reg": 84.98210144042969, + "step": 608 + }, + { + "epoch": 0.015225, + "grad_norm": 2.7001230716705322, + "grad_norm_var": 6.623600272248156, + "learning_rate": 0.0001, + "loss": 87.6396, + "loss/crossentropy": 2.6898162364959717, + "loss/hidden": 0.0, + "loss/logits": 0.21284155547618866, + "loss/reg": 84.73692321777344, + "step": 609 + }, + { + "epoch": 0.01525, + "grad_norm": 3.2781596183776855, + "grad_norm_var": 6.570657725923031, + "learning_rate": 0.0001, + "loss": 87.7335, + "loss/crossentropy": 2.9826276302337646, + "loss/hidden": 0.0, + "loss/logits": 0.25785699486732483, + "loss/reg": 84.4930191040039, + "step": 610 + }, + { + "epoch": 0.015275, + "grad_norm": 2.449453830718994, + "grad_norm_var": 6.596501814133948, + "learning_rate": 0.0001, + "loss": 87.1477, + "loss/crossentropy": 2.6783015727996826, + "loss/hidden": 0.0, + "loss/logits": 0.22048676013946533, + "loss/reg": 84.2489242553711, + "step": 611 + }, + { + "epoch": 0.0153, + "grad_norm": 2.459174394607544, + "grad_norm_var": 6.62690543519524, + "learning_rate": 0.0001, + "loss": 86.776, + "loss/crossentropy": 2.574934244155884, + "loss/hidden": 0.0, + "loss/logits": 0.19860099256038666, + "loss/reg": 84.0024185180664, + "step": 612 + }, + { + "epoch": 0.015325, + "grad_norm": 2.941655158996582, + "grad_norm_var": 6.601163552477004, + "learning_rate": 0.0001, + "loss": 86.9776, + "loss/crossentropy": 2.986813545227051, + "loss/hidden": 0.0, + "loss/logits": 0.23044732213020325, + "loss/reg": 83.76029968261719, + "step": 613 + }, + { + "epoch": 0.01535, + "grad_norm": 2.6428897380828857, + "grad_norm_var": 6.602249575617103, + "learning_rate": 0.0001, + "loss": 86.4506, + "loss/crossentropy": 2.6974997520446777, + "loss/hidden": 0.0, + "loss/logits": 0.2369295060634613, + "loss/reg": 83.51612091064453, + "step": 614 + }, + { + "epoch": 0.015375, + "grad_norm": 2.6571388244628906, + "grad_norm_var": 6.629487272361301, + "learning_rate": 0.0001, + "loss": 86.3883, + "loss/crossentropy": 2.886151075363159, + "loss/hidden": 0.0, + "loss/logits": 0.22736769914627075, + "loss/reg": 83.27473449707031, + "step": 615 + }, + { + "epoch": 0.0154, + "grad_norm": 2.609266996383667, + "grad_norm_var": 0.06577351547558692, + "learning_rate": 0.0001, + "loss": 86.0519, + "loss/crossentropy": 2.794356346130371, + "loss/hidden": 0.0, + "loss/logits": 0.22279015183448792, + "loss/reg": 83.0347900390625, + "step": 616 + }, + { + "epoch": 0.015425, + "grad_norm": 3.1104328632354736, + "grad_norm_var": 0.05918982306040803, + "learning_rate": 0.0001, + "loss": 85.9367, + "loss/crossentropy": 2.882596015930176, + "loss/hidden": 0.0, + "loss/logits": 0.25845298171043396, + "loss/reg": 82.79560852050781, + "step": 617 + }, + { + "epoch": 0.01545, + "grad_norm": 2.470853090286255, + "grad_norm_var": 0.06423085419138465, + "learning_rate": 0.0001, + "loss": 85.5665, + "loss/crossentropy": 2.796099901199341, + "loss/hidden": 0.0, + "loss/logits": 0.214504212141037, + "loss/reg": 82.55593872070312, + "step": 618 + }, + { + "epoch": 0.015475, + "grad_norm": 2.714553117752075, + "grad_norm_var": 0.06137795437797967, + "learning_rate": 0.0001, + "loss": 85.3188, + "loss/crossentropy": 2.7812206745147705, + "loss/hidden": 0.0, + "loss/logits": 0.2175397127866745, + "loss/reg": 82.32003021240234, + "step": 619 + }, + { + "epoch": 0.0155, + "grad_norm": 2.775290012359619, + "grad_norm_var": 0.061025800256583315, + "learning_rate": 0.0001, + "loss": 85.1917, + "loss/crossentropy": 2.8803231716156006, + "loss/hidden": 0.0, + "loss/logits": 0.22989241778850555, + "loss/reg": 82.0815200805664, + "step": 620 + }, + { + "epoch": 0.015525, + "grad_norm": 3.064432382583618, + "grad_norm_var": 0.06316760074340261, + "learning_rate": 0.0001, + "loss": 84.9975, + "loss/crossentropy": 2.9176337718963623, + "loss/hidden": 0.0, + "loss/logits": 0.2374771535396576, + "loss/reg": 81.8424072265625, + "step": 621 + }, + { + "epoch": 0.01555, + "grad_norm": 2.5047502517700195, + "grad_norm_var": 0.0607852310360857, + "learning_rate": 0.0001, + "loss": 84.4023, + "loss/crossentropy": 2.5925066471099854, + "loss/hidden": 0.0, + "loss/logits": 0.20711900293827057, + "loss/reg": 81.6026611328125, + "step": 622 + }, + { + "epoch": 0.015575, + "grad_norm": 2.9647669792175293, + "grad_norm_var": 0.06330394741956387, + "learning_rate": 0.0001, + "loss": 84.5351, + "loss/crossentropy": 2.934492826461792, + "loss/hidden": 0.0, + "loss/logits": 0.23662039637565613, + "loss/reg": 81.36399841308594, + "step": 623 + }, + { + "epoch": 0.0156, + "grad_norm": 2.6432931423187256, + "grad_norm_var": 0.06394843640099997, + "learning_rate": 0.0001, + "loss": 84.4146, + "loss/crossentropy": 3.0514731407165527, + "loss/hidden": 0.0, + "loss/logits": 0.22952324151992798, + "loss/reg": 81.13361358642578, + "step": 624 + }, + { + "epoch": 0.015625, + "grad_norm": 2.54736065864563, + "grad_norm_var": 0.06640534283560531, + "learning_rate": 0.0001, + "loss": 83.7896, + "loss/crossentropy": 2.670376777648926, + "loss/hidden": 0.0, + "loss/logits": 0.21750324964523315, + "loss/reg": 80.90174865722656, + "step": 625 + }, + { + "epoch": 0.01565, + "grad_norm": 2.8746328353881836, + "grad_norm_var": 0.047605595082000934, + "learning_rate": 0.0001, + "loss": 83.6016, + "loss/crossentropy": 2.705821990966797, + "loss/hidden": 0.0, + "loss/logits": 0.22585441172122955, + "loss/reg": 80.66989135742188, + "step": 626 + }, + { + "epoch": 0.015675, + "grad_norm": 4.1663737297058105, + "grad_norm_var": 0.17119830661165428, + "learning_rate": 0.0001, + "loss": 83.7693, + "loss/crossentropy": 3.0719547271728516, + "loss/hidden": 0.0, + "loss/logits": 0.25689268112182617, + "loss/reg": 80.44044494628906, + "step": 627 + }, + { + "epoch": 0.0157, + "grad_norm": 2.9214797019958496, + "grad_norm_var": 0.16221115285843457, + "learning_rate": 0.0001, + "loss": 83.4368, + "loss/crossentropy": 2.9782841205596924, + "loss/hidden": 0.0, + "loss/logits": 0.24059516191482544, + "loss/reg": 80.21793365478516, + "step": 628 + }, + { + "epoch": 0.015725, + "grad_norm": 2.3547921180725098, + "grad_norm_var": 0.17660964070513122, + "learning_rate": 0.0001, + "loss": 82.9563, + "loss/crossentropy": 2.759288787841797, + "loss/hidden": 0.0, + "loss/logits": 0.2049524188041687, + "loss/reg": 79.99205780029297, + "step": 629 + }, + { + "epoch": 0.01575, + "grad_norm": 2.5864202976226807, + "grad_norm_var": 0.17809647704259438, + "learning_rate": 0.0001, + "loss": 82.856, + "loss/crossentropy": 2.891166925430298, + "loss/hidden": 0.0, + "loss/logits": 0.19927763938903809, + "loss/reg": 79.76554870605469, + "step": 630 + }, + { + "epoch": 0.015775, + "grad_norm": 2.579041004180908, + "grad_norm_var": 0.1800732301463995, + "learning_rate": 0.0001, + "loss": 82.3371, + "loss/crossentropy": 2.578899621963501, + "loss/hidden": 0.0, + "loss/logits": 0.21475175023078918, + "loss/reg": 79.54348754882812, + "step": 631 + }, + { + "epoch": 0.0158, + "grad_norm": 2.8605313301086426, + "grad_norm_var": 0.17744545594942238, + "learning_rate": 0.0001, + "loss": 82.2226, + "loss/crossentropy": 2.6955201625823975, + "loss/hidden": 0.0, + "loss/logits": 0.20546796917915344, + "loss/reg": 79.32160186767578, + "step": 632 + }, + { + "epoch": 0.015825, + "grad_norm": 2.458681344985962, + "grad_norm_var": 0.1788587470198704, + "learning_rate": 0.0001, + "loss": 81.9029, + "loss/crossentropy": 2.6130025386810303, + "loss/hidden": 0.0, + "loss/logits": 0.19218957424163818, + "loss/reg": 79.09767150878906, + "step": 633 + }, + { + "epoch": 0.01585, + "grad_norm": 2.6389007568359375, + "grad_norm_var": 0.1736867369098557, + "learning_rate": 0.0001, + "loss": 82.1122, + "loss/crossentropy": 2.994948148727417, + "loss/hidden": 0.0, + "loss/logits": 0.24412985146045685, + "loss/reg": 78.87307739257812, + "step": 634 + }, + { + "epoch": 0.015875, + "grad_norm": 2.7426064014434814, + "grad_norm_var": 0.17345014249303006, + "learning_rate": 0.0001, + "loss": 81.7675, + "loss/crossentropy": 2.9031403064727783, + "loss/hidden": 0.0, + "loss/logits": 0.2145020067691803, + "loss/reg": 78.64982604980469, + "step": 635 + }, + { + "epoch": 0.0159, + "grad_norm": 2.5872960090637207, + "grad_norm_var": 0.176095637618936, + "learning_rate": 0.0001, + "loss": 81.2096, + "loss/crossentropy": 2.5721232891082764, + "loss/hidden": 0.0, + "loss/logits": 0.20824509859085083, + "loss/reg": 78.42925262451172, + "step": 636 + }, + { + "epoch": 0.015925, + "grad_norm": 2.639803886413574, + "grad_norm_var": 0.17131557533067104, + "learning_rate": 0.0001, + "loss": 81.7399, + "loss/crossentropy": 3.311671018600464, + "loss/hidden": 0.0, + "loss/logits": 0.2240554839372635, + "loss/reg": 78.20418548583984, + "step": 637 + }, + { + "epoch": 0.01595, + "grad_norm": 2.7064106464385986, + "grad_norm_var": 0.1671441066181302, + "learning_rate": 0.0001, + "loss": 81.0741, + "loss/crossentropy": 2.8790698051452637, + "loss/hidden": 0.0, + "loss/logits": 0.21729126572608948, + "loss/reg": 77.97772979736328, + "step": 638 + }, + { + "epoch": 0.015975, + "grad_norm": 2.6912827491760254, + "grad_norm_var": 0.16460811219505161, + "learning_rate": 0.0001, + "loss": 81.0138, + "loss/crossentropy": 3.024972915649414, + "loss/hidden": 0.0, + "loss/logits": 0.2377013862133026, + "loss/reg": 77.75112915039062, + "step": 639 + }, + { + "epoch": 0.016, + "grad_norm": 2.8207814693450928, + "grad_norm_var": 0.16405338147699144, + "learning_rate": 0.0001, + "loss": 80.6592, + "loss/crossentropy": 2.9033145904541016, + "loss/hidden": 0.0, + "loss/logits": 0.23379957675933838, + "loss/reg": 77.52207946777344, + "step": 640 + }, + { + "epoch": 0.016025, + "grad_norm": 2.738354444503784, + "grad_norm_var": 0.16089216214350396, + "learning_rate": 0.0001, + "loss": 80.3146, + "loss/crossentropy": 2.778174877166748, + "loss/hidden": 0.0, + "loss/logits": 0.24535414576530457, + "loss/reg": 77.29109954833984, + "step": 641 + }, + { + "epoch": 0.01605, + "grad_norm": 3.2551162242889404, + "grad_norm_var": 0.17509802330359298, + "learning_rate": 0.0001, + "loss": 80.2895, + "loss/crossentropy": 2.9776339530944824, + "loss/hidden": 0.0, + "loss/logits": 0.24247264862060547, + "loss/reg": 77.0693588256836, + "step": 642 + }, + { + "epoch": 0.016075, + "grad_norm": 2.881504535675049, + "grad_norm_var": 0.043638895164599255, + "learning_rate": 0.0001, + "loss": 80.1407, + "loss/crossentropy": 3.0473055839538574, + "loss/hidden": 0.0, + "loss/logits": 0.24725341796875, + "loss/reg": 76.84616088867188, + "step": 643 + }, + { + "epoch": 0.0161, + "grad_norm": 2.992424249649048, + "grad_norm_var": 0.045893014160188275, + "learning_rate": 0.0001, + "loss": 79.5319, + "loss/crossentropy": 2.674531936645508, + "loss/hidden": 0.0, + "loss/logits": 0.23270609974861145, + "loss/reg": 76.62467956542969, + "step": 644 + }, + { + "epoch": 0.016125, + "grad_norm": 2.4216911792755127, + "grad_norm_var": 0.04290734773771661, + "learning_rate": 0.0001, + "loss": 79.4997, + "loss/crossentropy": 2.8802490234375, + "loss/hidden": 0.0, + "loss/logits": 0.21543535590171814, + "loss/reg": 76.40399932861328, + "step": 645 + }, + { + "epoch": 0.01615, + "grad_norm": 2.5457189083099365, + "grad_norm_var": 0.043763224077495264, + "learning_rate": 0.0001, + "loss": 79.235, + "loss/crossentropy": 2.8406364917755127, + "loss/hidden": 0.0, + "loss/logits": 0.20543472468852997, + "loss/reg": 76.18891143798828, + "step": 646 + }, + { + "epoch": 0.016175, + "grad_norm": 2.762531280517578, + "grad_norm_var": 0.04235751730274515, + "learning_rate": 0.0001, + "loss": 78.9388, + "loss/crossentropy": 2.7533273696899414, + "loss/hidden": 0.0, + "loss/logits": 0.21493667364120483, + "loss/reg": 75.97050476074219, + "step": 647 + }, + { + "epoch": 0.0162, + "grad_norm": 2.390070676803589, + "grad_norm_var": 0.048252346296710394, + "learning_rate": 0.0001, + "loss": 78.7404, + "loss/crossentropy": 2.7817790508270264, + "loss/hidden": 0.0, + "loss/logits": 0.21161305904388428, + "loss/reg": 75.74702453613281, + "step": 648 + }, + { + "epoch": 0.016225, + "grad_norm": 2.534242868423462, + "grad_norm_var": 0.046131862120249896, + "learning_rate": 0.0001, + "loss": 78.2552, + "loss/crossentropy": 2.5109705924987793, + "loss/hidden": 0.0, + "loss/logits": 0.20796047151088715, + "loss/reg": 75.53626251220703, + "step": 649 + }, + { + "epoch": 0.01625, + "grad_norm": 2.9576361179351807, + "grad_norm_var": 0.04948971532782949, + "learning_rate": 0.0001, + "loss": 78.448, + "loss/crossentropy": 2.9173483848571777, + "loss/hidden": 0.0, + "loss/logits": 0.20767123997211456, + "loss/reg": 75.32296752929688, + "step": 650 + }, + { + "epoch": 0.016275, + "grad_norm": 3.188835620880127, + "grad_norm_var": 0.06273138119426373, + "learning_rate": 0.0001, + "loss": 78.3685, + "loss/crossentropy": 3.024512529373169, + "loss/hidden": 0.0, + "loss/logits": 0.23480483889579773, + "loss/reg": 75.10919189453125, + "step": 651 + }, + { + "epoch": 0.0163, + "grad_norm": 2.9349732398986816, + "grad_norm_var": 0.06241445749091478, + "learning_rate": 0.0001, + "loss": 78.1327, + "loss/crossentropy": 3.004549264907837, + "loss/hidden": 0.0, + "loss/logits": 0.2360680103302002, + "loss/reg": 74.8920669555664, + "step": 652 + }, + { + "epoch": 0.016325, + "grad_norm": 2.927232265472412, + "grad_norm_var": 0.06224965786214606, + "learning_rate": 0.0001, + "loss": 77.718, + "loss/crossentropy": 2.8078725337982178, + "loss/hidden": 0.0, + "loss/logits": 0.22627294063568115, + "loss/reg": 74.68383026123047, + "step": 653 + }, + { + "epoch": 0.01635, + "grad_norm": 2.6294076442718506, + "grad_norm_var": 0.06354828695962549, + "learning_rate": 0.0001, + "loss": 77.6217, + "loss/crossentropy": 2.906186580657959, + "loss/hidden": 0.0, + "loss/logits": 0.24207134544849396, + "loss/reg": 74.47340393066406, + "step": 654 + }, + { + "epoch": 0.016375, + "grad_norm": 2.4185891151428223, + "grad_norm_var": 0.07185744774492757, + "learning_rate": 0.0001, + "loss": 77.1087, + "loss/crossentropy": 2.6219069957733154, + "loss/hidden": 0.0, + "loss/logits": 0.21973133087158203, + "loss/reg": 74.26707458496094, + "step": 655 + }, + { + "epoch": 0.0164, + "grad_norm": 3.0168731212615967, + "grad_norm_var": 0.07545913020925733, + "learning_rate": 0.0001, + "loss": 77.1465, + "loss/crossentropy": 2.838118076324463, + "loss/hidden": 0.0, + "loss/logits": 0.24065163731575012, + "loss/reg": 74.0677719116211, + "step": 656 + }, + { + "epoch": 0.016425, + "grad_norm": 2.7818074226379395, + "grad_norm_var": 0.07529414177001831, + "learning_rate": 0.0001, + "loss": 76.9287, + "loss/crossentropy": 2.8338921070098877, + "loss/hidden": 0.0, + "loss/logits": 0.22610336542129517, + "loss/reg": 73.86873626708984, + "step": 657 + }, + { + "epoch": 0.01645, + "grad_norm": 2.854801654815674, + "grad_norm_var": 0.06047968099176065, + "learning_rate": 0.0001, + "loss": 76.6613, + "loss/crossentropy": 2.7867751121520996, + "loss/hidden": 0.0, + "loss/logits": 0.209943026304245, + "loss/reg": 73.6645736694336, + "step": 658 + }, + { + "epoch": 0.016475, + "grad_norm": 2.9934234619140625, + "grad_norm_var": 0.063002636345387, + "learning_rate": 0.0001, + "loss": 76.8956, + "loss/crossentropy": 3.177863359451294, + "loss/hidden": 0.0, + "loss/logits": 0.24757607281208038, + "loss/reg": 73.47013854980469, + "step": 659 + }, + { + "epoch": 0.0165, + "grad_norm": 2.6304805278778076, + "grad_norm_var": 0.06054759846060639, + "learning_rate": 0.0001, + "loss": 76.1319, + "loss/crossentropy": 2.6409659385681152, + "loss/hidden": 0.0, + "loss/logits": 0.21888282895088196, + "loss/reg": 73.27206420898438, + "step": 660 + }, + { + "epoch": 0.016525, + "grad_norm": 2.7408792972564697, + "grad_norm_var": 0.05297394175892407, + "learning_rate": 0.0001, + "loss": 76.4855, + "loss/crossentropy": 3.1915743350982666, + "loss/hidden": 0.0, + "loss/logits": 0.2194949984550476, + "loss/reg": 73.07437896728516, + "step": 661 + }, + { + "epoch": 0.01655, + "grad_norm": 2.7700512409210205, + "grad_norm_var": 0.04943414917226316, + "learning_rate": 0.0001, + "loss": 75.886, + "loss/crossentropy": 2.7812137603759766, + "loss/hidden": 0.0, + "loss/logits": 0.2344488501548767, + "loss/reg": 72.8703384399414, + "step": 662 + }, + { + "epoch": 0.016575, + "grad_norm": 2.6418073177337646, + "grad_norm_var": 0.050678375391551594, + "learning_rate": 0.0001, + "loss": 75.6395, + "loss/crossentropy": 2.7417471408843994, + "loss/hidden": 0.0, + "loss/logits": 0.2233429104089737, + "loss/reg": 72.67445373535156, + "step": 663 + }, + { + "epoch": 0.0166, + "grad_norm": 3.158125162124634, + "grad_norm_var": 0.04805692783096613, + "learning_rate": 0.0001, + "loss": 75.6306, + "loss/crossentropy": 2.9241199493408203, + "loss/hidden": 0.0, + "loss/logits": 0.22319327294826508, + "loss/reg": 72.48330688476562, + "step": 664 + }, + { + "epoch": 0.016625, + "grad_norm": 2.736354351043701, + "grad_norm_var": 0.042809702674100926, + "learning_rate": 0.0001, + "loss": 75.3328, + "loss/crossentropy": 2.8228261470794678, + "loss/hidden": 0.0, + "loss/logits": 0.22843888401985168, + "loss/reg": 72.28150939941406, + "step": 665 + }, + { + "epoch": 0.01665, + "grad_norm": 2.7677245140075684, + "grad_norm_var": 0.04199219130631846, + "learning_rate": 0.0001, + "loss": 74.9261, + "loss/crossentropy": 2.627197027206421, + "loss/hidden": 0.0, + "loss/logits": 0.22012290358543396, + "loss/reg": 72.07875061035156, + "step": 666 + }, + { + "epoch": 0.016675, + "grad_norm": 2.5004570484161377, + "grad_norm_var": 0.03816500903700728, + "learning_rate": 0.0001, + "loss": 74.777, + "loss/crossentropy": 2.672111988067627, + "loss/hidden": 0.0, + "loss/logits": 0.22588777542114258, + "loss/reg": 71.87902069091797, + "step": 667 + }, + { + "epoch": 0.0167, + "grad_norm": 2.466562509536743, + "grad_norm_var": 0.042288959656074356, + "learning_rate": 0.0001, + "loss": 74.7091, + "loss/crossentropy": 2.8123865127563477, + "loss/hidden": 0.0, + "loss/logits": 0.21958181262016296, + "loss/reg": 71.6771469116211, + "step": 668 + }, + { + "epoch": 0.016725, + "grad_norm": 2.751133918762207, + "grad_norm_var": 0.04011649012775607, + "learning_rate": 0.0001, + "loss": 74.4675, + "loss/crossentropy": 2.754987955093384, + "loss/hidden": 0.0, + "loss/logits": 0.23784713447093964, + "loss/reg": 71.4747085571289, + "step": 669 + }, + { + "epoch": 0.01675, + "grad_norm": 2.6867825984954834, + "grad_norm_var": 0.03946736718336652, + "learning_rate": 0.0001, + "loss": 74.5895, + "loss/crossentropy": 3.101982593536377, + "loss/hidden": 0.0, + "loss/logits": 0.21628157794475555, + "loss/reg": 71.27123260498047, + "step": 670 + }, + { + "epoch": 0.016775, + "grad_norm": 2.500910997390747, + "grad_norm_var": 0.03631099988891246, + "learning_rate": 0.0001, + "loss": 73.8414, + "loss/crossentropy": 2.5617518424987793, + "loss/hidden": 0.0, + "loss/logits": 0.20989301800727844, + "loss/reg": 71.06979370117188, + "step": 671 + }, + { + "epoch": 0.0168, + "grad_norm": 2.473396062850952, + "grad_norm_var": 0.03542460303709258, + "learning_rate": 0.0001, + "loss": 73.9086, + "loss/crossentropy": 2.824228286743164, + "loss/hidden": 0.0, + "loss/logits": 0.2157234251499176, + "loss/reg": 70.86860656738281, + "step": 672 + }, + { + "epoch": 0.016825, + "grad_norm": 2.8463189601898193, + "grad_norm_var": 0.036251456664882414, + "learning_rate": 0.0001, + "loss": 73.6464, + "loss/crossentropy": 2.7426350116729736, + "loss/hidden": 0.0, + "loss/logits": 0.23804283142089844, + "loss/reg": 70.66572570800781, + "step": 673 + }, + { + "epoch": 0.01685, + "grad_norm": 2.4676475524902344, + "grad_norm_var": 0.03865839021441365, + "learning_rate": 0.0001, + "loss": 73.4992, + "loss/crossentropy": 2.813382863998413, + "loss/hidden": 0.0, + "loss/logits": 0.21776646375656128, + "loss/reg": 70.46805572509766, + "step": 674 + }, + { + "epoch": 0.016875, + "grad_norm": 3.2696657180786133, + "grad_norm_var": 0.054391622405608804, + "learning_rate": 0.0001, + "loss": 73.4994, + "loss/crossentropy": 2.9931130409240723, + "loss/hidden": 0.0, + "loss/logits": 0.2343236804008484, + "loss/reg": 70.27191925048828, + "step": 675 + }, + { + "epoch": 0.0169, + "grad_norm": 2.960261344909668, + "grad_norm_var": 0.05755957057574411, + "learning_rate": 0.0001, + "loss": 73.1637, + "loss/crossentropy": 2.845167398452759, + "loss/hidden": 0.0, + "loss/logits": 0.24311169981956482, + "loss/reg": 70.0754165649414, + "step": 676 + }, + { + "epoch": 0.016925, + "grad_norm": 2.8058366775512695, + "grad_norm_var": 0.057886073712972795, + "learning_rate": 0.0001, + "loss": 72.9262, + "loss/crossentropy": 2.7900030612945557, + "loss/hidden": 0.0, + "loss/logits": 0.2522013783454895, + "loss/reg": 69.8840103149414, + "step": 677 + }, + { + "epoch": 0.01695, + "grad_norm": 2.6820642948150635, + "grad_norm_var": 0.05799027827774973, + "learning_rate": 0.0001, + "loss": 72.9552, + "loss/crossentropy": 3.0160844326019287, + "loss/hidden": 0.0, + "loss/logits": 0.25032639503479004, + "loss/reg": 69.68882751464844, + "step": 678 + }, + { + "epoch": 0.016975, + "grad_norm": 2.756159782409668, + "grad_norm_var": 0.05742948572952381, + "learning_rate": 0.0001, + "loss": 72.4603, + "loss/crossentropy": 2.7341785430908203, + "loss/hidden": 0.0, + "loss/logits": 0.23339924216270447, + "loss/reg": 69.49270629882812, + "step": 679 + }, + { + "epoch": 0.017, + "grad_norm": 2.85196852684021, + "grad_norm_var": 0.04619244950055569, + "learning_rate": 0.0001, + "loss": 72.4025, + "loss/crossentropy": 2.8541834354400635, + "loss/hidden": 0.0, + "loss/logits": 0.2513972520828247, + "loss/reg": 69.29695129394531, + "step": 680 + }, + { + "epoch": 0.017025, + "grad_norm": 2.745920419692993, + "grad_norm_var": 0.046218769763096884, + "learning_rate": 0.0001, + "loss": 72.2013, + "loss/crossentropy": 2.8387668132781982, + "loss/hidden": 0.0, + "loss/logits": 0.2571982443332672, + "loss/reg": 69.1053237915039, + "step": 681 + }, + { + "epoch": 0.01705, + "grad_norm": 2.7895922660827637, + "grad_norm_var": 0.046385473001735275, + "learning_rate": 0.0001, + "loss": 72.1027, + "loss/crossentropy": 2.9553239345550537, + "loss/hidden": 0.0, + "loss/logits": 0.23462611436843872, + "loss/reg": 68.9127426147461, + "step": 682 + }, + { + "epoch": 0.017075, + "grad_norm": 3.0583336353302, + "grad_norm_var": 0.049345512699435545, + "learning_rate": 0.0001, + "loss": 71.6065, + "loss/crossentropy": 2.6561527252197266, + "loss/hidden": 0.0, + "loss/logits": 0.22944068908691406, + "loss/reg": 68.72093963623047, + "step": 683 + }, + { + "epoch": 0.0171, + "grad_norm": 10.506353378295898, + "grad_norm_var": 3.7778572455504134, + "learning_rate": 0.0001, + "loss": 71.4093, + "loss/crossentropy": 2.677732467651367, + "loss/hidden": 0.0, + "loss/logits": 0.20256610214710236, + "loss/reg": 68.52899169921875, + "step": 684 + }, + { + "epoch": 0.017125, + "grad_norm": 2.7688822746276855, + "grad_norm_var": 3.77667386049867, + "learning_rate": 0.0001, + "loss": 71.4833, + "loss/crossentropy": 2.910447359085083, + "loss/hidden": 0.0, + "loss/logits": 0.23493064939975739, + "loss/reg": 68.33790588378906, + "step": 685 + }, + { + "epoch": 0.01715, + "grad_norm": 2.6812407970428467, + "grad_norm_var": 3.77709980042232, + "learning_rate": 0.0001, + "loss": 70.9918, + "loss/crossentropy": 2.609196424484253, + "loss/hidden": 0.0, + "loss/logits": 0.23388031125068665, + "loss/reg": 68.14875030517578, + "step": 686 + }, + { + "epoch": 0.017175, + "grad_norm": 2.8212389945983887, + "grad_norm_var": 3.7510797794332498, + "learning_rate": 0.0001, + "loss": 71.0687, + "loss/crossentropy": 2.8833634853363037, + "loss/hidden": 0.0, + "loss/logits": 0.22528675198554993, + "loss/reg": 67.9600830078125, + "step": 687 + }, + { + "epoch": 0.0172, + "grad_norm": 2.6118838787078857, + "grad_norm_var": 3.737378850831258, + "learning_rate": 0.0001, + "loss": 70.4259, + "loss/crossentropy": 2.438934564590454, + "loss/hidden": 0.0, + "loss/logits": 0.21688072383403778, + "loss/reg": 67.7700424194336, + "step": 688 + }, + { + "epoch": 0.017225, + "grad_norm": 2.8803842067718506, + "grad_norm_var": 3.7354408858260792, + "learning_rate": 0.0001, + "loss": 70.6865, + "loss/crossentropy": 2.8623788356781006, + "loss/hidden": 0.0, + "loss/logits": 0.23739641904830933, + "loss/reg": 67.58670043945312, + "step": 689 + }, + { + "epoch": 0.01725, + "grad_norm": 2.9390385150909424, + "grad_norm_var": 3.697573889963882, + "learning_rate": 0.0001, + "loss": 70.1731, + "loss/crossentropy": 2.5417747497558594, + "loss/hidden": 0.0, + "loss/logits": 0.2275683581829071, + "loss/reg": 67.40377044677734, + "step": 690 + }, + { + "epoch": 0.017275, + "grad_norm": 3.4491701126098633, + "grad_norm_var": 3.6983698569325107, + "learning_rate": 0.0001, + "loss": 70.0581, + "loss/crossentropy": 2.6056199073791504, + "loss/hidden": 0.0, + "loss/logits": 0.23559321463108063, + "loss/reg": 67.2168960571289, + "step": 691 + }, + { + "epoch": 0.0173, + "grad_norm": 3.0338120460510254, + "grad_norm_var": 3.695064661679089, + "learning_rate": 0.0001, + "loss": 70.0615, + "loss/crossentropy": 2.7806742191314697, + "loss/hidden": 0.0, + "loss/logits": 0.24799373745918274, + "loss/reg": 67.03279876708984, + "step": 692 + }, + { + "epoch": 0.017325, + "grad_norm": 2.7937796115875244, + "grad_norm_var": 3.6959266334784027, + "learning_rate": 0.0001, + "loss": 69.9194, + "loss/crossentropy": 2.838820219039917, + "loss/hidden": 0.0, + "loss/logits": 0.22827139496803284, + "loss/reg": 66.85226440429688, + "step": 693 + }, + { + "epoch": 0.01735, + "grad_norm": 2.4988961219787598, + "grad_norm_var": 3.713984810158103, + "learning_rate": 0.0001, + "loss": 69.5952, + "loss/crossentropy": 2.718376398086548, + "loss/hidden": 0.0, + "loss/logits": 0.20215165615081787, + "loss/reg": 66.67467498779297, + "step": 694 + }, + { + "epoch": 0.017375, + "grad_norm": 2.665208339691162, + "grad_norm_var": 3.721389950709211, + "learning_rate": 0.0001, + "loss": 69.5769, + "loss/crossentropy": 2.8547093868255615, + "loss/hidden": 0.0, + "loss/logits": 0.2223222255706787, + "loss/reg": 66.49986267089844, + "step": 695 + }, + { + "epoch": 0.0174, + "grad_norm": 2.7634010314941406, + "grad_norm_var": 3.7273892640509603, + "learning_rate": 0.0001, + "loss": 69.3502, + "loss/crossentropy": 2.8282363414764404, + "loss/hidden": 0.0, + "loss/logits": 0.2077331691980362, + "loss/reg": 66.31417846679688, + "step": 696 + }, + { + "epoch": 0.017425, + "grad_norm": 3.8694913387298584, + "grad_norm_var": 3.7213441994990677, + "learning_rate": 0.0001, + "loss": 70.1241, + "loss/crossentropy": 3.720386266708374, + "loss/hidden": 0.0, + "loss/logits": 0.2679758071899414, + "loss/reg": 66.13578796386719, + "step": 697 + }, + { + "epoch": 0.01745, + "grad_norm": 5.2169013023376465, + "grad_norm_var": 3.897477580961625, + "learning_rate": 0.0001, + "loss": 69.5964, + "loss/crossentropy": 3.217229127883911, + "loss/hidden": 0.0, + "loss/logits": 0.42148905992507935, + "loss/reg": 65.95770263671875, + "step": 698 + }, + { + "epoch": 0.017475, + "grad_norm": 3.6213738918304443, + "grad_norm_var": 3.8815159738632965, + "learning_rate": 0.0001, + "loss": 68.5239, + "loss/crossentropy": 2.502047061920166, + "loss/hidden": 0.0, + "loss/logits": 0.24625252187252045, + "loss/reg": 65.7756118774414, + "step": 699 + }, + { + "epoch": 0.0175, + "grad_norm": 2.716905355453491, + "grad_norm_var": 0.46975474422527747, + "learning_rate": 0.0001, + "loss": 68.5619, + "loss/crossentropy": 2.764882802963257, + "loss/hidden": 0.0, + "loss/logits": 0.20099103450775146, + "loss/reg": 65.5960693359375, + "step": 700 + }, + { + "epoch": 0.017525, + "grad_norm": 2.6961023807525635, + "grad_norm_var": 0.47313618338585167, + "learning_rate": 0.0001, + "loss": 68.6203, + "loss/crossentropy": 2.978670358657837, + "loss/hidden": 0.0, + "loss/logits": 0.2190450131893158, + "loss/reg": 65.42259216308594, + "step": 701 + }, + { + "epoch": 0.01755, + "grad_norm": 2.7581896781921387, + "grad_norm_var": 0.46942862049069445, + "learning_rate": 0.0001, + "loss": 68.2458, + "loss/crossentropy": 2.773253917694092, + "loss/hidden": 0.0, + "loss/logits": 0.2290889024734497, + "loss/reg": 65.24346160888672, + "step": 702 + }, + { + "epoch": 0.017575, + "grad_norm": 2.856942653656006, + "grad_norm_var": 0.468259868516004, + "learning_rate": 0.0001, + "loss": 68.2141, + "loss/crossentropy": 2.897153854370117, + "loss/hidden": 0.0, + "loss/logits": 0.24900856614112854, + "loss/reg": 65.06795501708984, + "step": 703 + }, + { + "epoch": 0.0176, + "grad_norm": 2.5926945209503174, + "grad_norm_var": 0.469495224772921, + "learning_rate": 0.0001, + "loss": 67.9397, + "loss/crossentropy": 2.8245160579681396, + "loss/hidden": 0.0, + "loss/logits": 0.2201787531375885, + "loss/reg": 64.8949966430664, + "step": 704 + }, + { + "epoch": 0.017625, + "grad_norm": 2.5850887298583984, + "grad_norm_var": 0.48298250086362465, + "learning_rate": 0.0001, + "loss": 67.705, + "loss/crossentropy": 2.749037265777588, + "loss/hidden": 0.0, + "loss/logits": 0.2325897514820099, + "loss/reg": 64.72339630126953, + "step": 705 + }, + { + "epoch": 0.01765, + "grad_norm": 2.7953805923461914, + "grad_norm_var": 0.486705412463463, + "learning_rate": 0.0001, + "loss": 68.0719, + "loss/crossentropy": 3.281177282333374, + "loss/hidden": 0.0, + "loss/logits": 0.23989194631576538, + "loss/reg": 64.55084991455078, + "step": 706 + }, + { + "epoch": 0.017675, + "grad_norm": 2.8562774658203125, + "grad_norm_var": 0.4776801572940296, + "learning_rate": 0.0001, + "loss": 67.7388, + "loss/crossentropy": 3.113478899002075, + "loss/hidden": 0.0, + "loss/logits": 0.2437664419412613, + "loss/reg": 64.38153839111328, + "step": 707 + }, + { + "epoch": 0.0177, + "grad_norm": 2.6234002113342285, + "grad_norm_var": 0.4874532296205454, + "learning_rate": 0.0001, + "loss": 67.1132, + "loss/crossentropy": 2.668200731277466, + "loss/hidden": 0.0, + "loss/logits": 0.2298266887664795, + "loss/reg": 64.21515655517578, + "step": 708 + }, + { + "epoch": 0.017725, + "grad_norm": 3.07820725440979, + "grad_norm_var": 0.48490202715237274, + "learning_rate": 0.0001, + "loss": 67.0545, + "loss/crossentropy": 2.7720115184783936, + "loss/hidden": 0.0, + "loss/logits": 0.24164924025535583, + "loss/reg": 64.04081726074219, + "step": 709 + }, + { + "epoch": 0.01775, + "grad_norm": 3.3483076095581055, + "grad_norm_var": 0.4718668398271717, + "learning_rate": 0.0001, + "loss": 67.0299, + "loss/crossentropy": 2.9127249717712402, + "loss/hidden": 0.0, + "loss/logits": 0.24779383838176727, + "loss/reg": 63.869354248046875, + "step": 710 + }, + { + "epoch": 0.017775, + "grad_norm": 2.7884206771850586, + "grad_norm_var": 0.46624379181974973, + "learning_rate": 0.0001, + "loss": 66.733, + "loss/crossentropy": 2.7825210094451904, + "loss/hidden": 0.0, + "loss/logits": 0.2500211000442505, + "loss/reg": 63.70044708251953, + "step": 711 + }, + { + "epoch": 0.0178, + "grad_norm": 2.7660884857177734, + "grad_norm_var": 0.4661333259783419, + "learning_rate": 0.0001, + "loss": 66.8389, + "loss/crossentropy": 3.069040298461914, + "loss/hidden": 0.0, + "loss/logits": 0.24203762412071228, + "loss/reg": 63.52777862548828, + "step": 712 + }, + { + "epoch": 0.017825, + "grad_norm": 2.770434617996216, + "grad_norm_var": 0.42492635693953673, + "learning_rate": 0.0001, + "loss": 66.559, + "loss/crossentropy": 2.9704928398132324, + "loss/hidden": 0.0, + "loss/logits": 0.23337113857269287, + "loss/reg": 63.3551139831543, + "step": 713 + }, + { + "epoch": 0.01785, + "grad_norm": 2.4780144691467285, + "grad_norm_var": 0.08580528270122821, + "learning_rate": 0.0001, + "loss": 66.2605, + "loss/crossentropy": 2.8575258255004883, + "loss/hidden": 0.0, + "loss/logits": 0.2185363471508026, + "loss/reg": 63.184391021728516, + "step": 714 + }, + { + "epoch": 0.017875, + "grad_norm": 2.620495080947876, + "grad_norm_var": 0.043238218869502514, + "learning_rate": 0.0001, + "loss": 65.9609, + "loss/crossentropy": 2.7202653884887695, + "loss/hidden": 0.0, + "loss/logits": 0.22694343328475952, + "loss/reg": 63.01369094848633, + "step": 715 + }, + { + "epoch": 0.0179, + "grad_norm": 2.542977809906006, + "grad_norm_var": 0.04637604671543893, + "learning_rate": 0.0001, + "loss": 65.9499, + "loss/crossentropy": 2.8846218585968018, + "loss/hidden": 0.0, + "loss/logits": 0.21847984194755554, + "loss/reg": 62.84674835205078, + "step": 716 + }, + { + "epoch": 0.017925, + "grad_norm": 2.3846898078918457, + "grad_norm_var": 0.05508256728689957, + "learning_rate": 0.0001, + "loss": 65.4993, + "loss/crossentropy": 2.6143085956573486, + "loss/hidden": 0.0, + "loss/logits": 0.20310330390930176, + "loss/reg": 62.681915283203125, + "step": 717 + }, + { + "epoch": 0.01795, + "grad_norm": 2.73012375831604, + "grad_norm_var": 0.05506504227467772, + "learning_rate": 0.0001, + "loss": 65.5976, + "loss/crossentropy": 2.8506314754486084, + "loss/hidden": 0.0, + "loss/logits": 0.22879712283611298, + "loss/reg": 62.518165588378906, + "step": 718 + }, + { + "epoch": 0.017975, + "grad_norm": 2.4760758876800537, + "grad_norm_var": 0.05812137756337279, + "learning_rate": 0.0001, + "loss": 65.5302, + "loss/crossentropy": 2.9573020935058594, + "loss/hidden": 0.0, + "loss/logits": 0.2235342562198639, + "loss/reg": 62.34933090209961, + "step": 719 + }, + { + "epoch": 0.018, + "grad_norm": 2.9984333515167236, + "grad_norm_var": 0.06180506886074681, + "learning_rate": 0.0001, + "loss": 65.2478, + "loss/crossentropy": 2.825148344039917, + "loss/hidden": 0.0, + "loss/logits": 0.24277126789093018, + "loss/reg": 62.17986297607422, + "step": 720 + }, + { + "epoch": 0.018025, + "grad_norm": 2.449723243713379, + "grad_norm_var": 0.06574898435085288, + "learning_rate": 0.0001, + "loss": 64.8758, + "loss/crossentropy": 2.6417102813720703, + "loss/hidden": 0.0, + "loss/logits": 0.22177964448928833, + "loss/reg": 62.012306213378906, + "step": 721 + }, + { + "epoch": 0.01805, + "grad_norm": 2.6764326095581055, + "grad_norm_var": 0.06562316783263214, + "learning_rate": 0.0001, + "loss": 64.9029, + "loss/crossentropy": 2.828677177429199, + "loss/hidden": 0.0, + "loss/logits": 0.23033303022384644, + "loss/reg": 61.84387969970703, + "step": 722 + }, + { + "epoch": 0.018075, + "grad_norm": 2.8159947395324707, + "grad_norm_var": 0.06501549731222649, + "learning_rate": 0.0001, + "loss": 65.0769, + "loss/crossentropy": 3.174980878829956, + "loss/hidden": 0.0, + "loss/logits": 0.22877538204193115, + "loss/reg": 61.67316818237305, + "step": 723 + }, + { + "epoch": 0.0181, + "grad_norm": 3.2005398273468018, + "grad_norm_var": 0.07826629049727458, + "learning_rate": 0.0001, + "loss": 64.9549, + "loss/crossentropy": 3.203920364379883, + "loss/hidden": 0.0, + "loss/logits": 0.24600070714950562, + "loss/reg": 61.50501251220703, + "step": 724 + }, + { + "epoch": 0.018125, + "grad_norm": 2.9479753971099854, + "grad_norm_var": 0.07376285343432466, + "learning_rate": 0.0001, + "loss": 64.4933, + "loss/crossentropy": 2.9181010723114014, + "loss/hidden": 0.0, + "loss/logits": 0.23694497346878052, + "loss/reg": 61.338253021240234, + "step": 725 + }, + { + "epoch": 0.01815, + "grad_norm": 3.087327718734741, + "grad_norm_var": 0.05718879220165339, + "learning_rate": 0.0001, + "loss": 64.0707, + "loss/crossentropy": 2.6616029739379883, + "loss/hidden": 0.0, + "loss/logits": 0.2374861240386963, + "loss/reg": 61.17159652709961, + "step": 726 + }, + { + "epoch": 0.018175, + "grad_norm": 2.491910934448242, + "grad_norm_var": 0.06050683436232778, + "learning_rate": 0.0001, + "loss": 63.8745, + "loss/crossentropy": 2.6548359394073486, + "loss/hidden": 0.0, + "loss/logits": 0.2142171561717987, + "loss/reg": 61.00545120239258, + "step": 727 + }, + { + "epoch": 0.0182, + "grad_norm": 2.7890079021453857, + "grad_norm_var": 0.060696315605900726, + "learning_rate": 0.0001, + "loss": 63.9746, + "loss/crossentropy": 2.92938232421875, + "loss/hidden": 0.0, + "loss/logits": 0.20511876046657562, + "loss/reg": 60.84012985229492, + "step": 728 + }, + { + "epoch": 0.018225, + "grad_norm": 2.7196593284606934, + "grad_norm_var": 0.06049068327400467, + "learning_rate": 0.0001, + "loss": 63.5493, + "loss/crossentropy": 2.639850378036499, + "loss/hidden": 0.0, + "loss/logits": 0.23349660634994507, + "loss/reg": 60.675933837890625, + "step": 729 + }, + { + "epoch": 0.01825, + "grad_norm": 2.650775671005249, + "grad_norm_var": 0.05694124485670666, + "learning_rate": 0.0001, + "loss": 63.5801, + "loss/crossentropy": 2.8353641033172607, + "loss/hidden": 0.0, + "loss/logits": 0.23342850804328918, + "loss/reg": 60.51133346557617, + "step": 730 + }, + { + "epoch": 0.018275, + "grad_norm": 2.598869800567627, + "grad_norm_var": 0.05726858156747217, + "learning_rate": 0.0001, + "loss": 63.436, + "loss/crossentropy": 2.8569741249084473, + "loss/hidden": 0.0, + "loss/logits": 0.23304705321788788, + "loss/reg": 60.345970153808594, + "step": 731 + }, + { + "epoch": 0.0183, + "grad_norm": 2.6495063304901123, + "grad_norm_var": 0.055427494487368514, + "learning_rate": 0.0001, + "loss": 63.132, + "loss/crossentropy": 2.7324588298797607, + "loss/hidden": 0.0, + "loss/logits": 0.21595758199691772, + "loss/reg": 60.183570861816406, + "step": 732 + }, + { + "epoch": 0.018325, + "grad_norm": 2.603133201599121, + "grad_norm_var": 0.04837598895656067, + "learning_rate": 0.0001, + "loss": 62.695, + "loss/crossentropy": 2.4560225009918213, + "loss/hidden": 0.0, + "loss/logits": 0.21853625774383545, + "loss/reg": 60.02042770385742, + "step": 733 + }, + { + "epoch": 0.01835, + "grad_norm": 3.1586227416992188, + "grad_norm_var": 0.05912500309994281, + "learning_rate": 0.0001, + "loss": 63.1673, + "loss/crossentropy": 3.0193772315979004, + "loss/hidden": 0.0, + "loss/logits": 0.28715232014656067, + "loss/reg": 59.86080551147461, + "step": 734 + }, + { + "epoch": 0.018375, + "grad_norm": 2.6718556880950928, + "grad_norm_var": 0.053857831483746094, + "learning_rate": 0.0001, + "loss": 62.6891, + "loss/crossentropy": 2.7639520168304443, + "loss/hidden": 0.0, + "loss/logits": 0.22497007250785828, + "loss/reg": 59.70021057128906, + "step": 735 + }, + { + "epoch": 0.0184, + "grad_norm": 2.7182719707489014, + "grad_norm_var": 0.05067343602402825, + "learning_rate": 0.0001, + "loss": 62.8571, + "loss/crossentropy": 3.092790365219116, + "loss/hidden": 0.0, + "loss/logits": 0.22454728186130524, + "loss/reg": 59.53980255126953, + "step": 736 + }, + { + "epoch": 0.018425, + "grad_norm": 2.63033127784729, + "grad_norm_var": 0.04513557987957005, + "learning_rate": 0.0001, + "loss": 62.4324, + "loss/crossentropy": 2.814718008041382, + "loss/hidden": 0.0, + "loss/logits": 0.23878329992294312, + "loss/reg": 59.37885284423828, + "step": 737 + }, + { + "epoch": 0.01845, + "grad_norm": 2.9615981578826904, + "grad_norm_var": 0.046446030177343306, + "learning_rate": 0.0001, + "loss": 62.5695, + "loss/crossentropy": 3.1102991104125977, + "loss/hidden": 0.0, + "loss/logits": 0.2397473156452179, + "loss/reg": 59.219425201416016, + "step": 738 + }, + { + "epoch": 0.018475, + "grad_norm": 2.7155027389526367, + "grad_norm_var": 0.04677527116378618, + "learning_rate": 0.0001, + "loss": 62.0607, + "loss/crossentropy": 2.7697606086730957, + "loss/hidden": 0.0, + "loss/logits": 0.23005826771259308, + "loss/reg": 59.06086349487305, + "step": 739 + }, + { + "epoch": 0.0185, + "grad_norm": 2.794189214706421, + "grad_norm_var": 0.03469948264410713, + "learning_rate": 0.0001, + "loss": 61.9033, + "loss/crossentropy": 2.7485909461975098, + "loss/hidden": 0.0, + "loss/logits": 0.24854815006256104, + "loss/reg": 58.9061279296875, + "step": 740 + }, + { + "epoch": 0.018525, + "grad_norm": 2.6141436100006104, + "grad_norm_var": 0.03337714746116092, + "learning_rate": 0.0001, + "loss": 61.7766, + "loss/crossentropy": 2.809553384780884, + "loss/hidden": 0.0, + "loss/logits": 0.21490439772605896, + "loss/reg": 58.752098083496094, + "step": 741 + }, + { + "epoch": 0.01855, + "grad_norm": 2.6113595962524414, + "grad_norm_var": 0.025552325556027947, + "learning_rate": 0.0001, + "loss": 61.7345, + "loss/crossentropy": 2.905996322631836, + "loss/hidden": 0.0, + "loss/logits": 0.22810769081115723, + "loss/reg": 58.60040283203125, + "step": 742 + }, + { + "epoch": 0.018575, + "grad_norm": 2.6710562705993652, + "grad_norm_var": 0.022320882287599632, + "learning_rate": 0.0001, + "loss": 61.7047, + "loss/crossentropy": 3.0256869792938232, + "loss/hidden": 0.0, + "loss/logits": 0.23153835535049438, + "loss/reg": 58.4475212097168, + "step": 743 + }, + { + "epoch": 0.0186, + "grad_norm": 2.6590538024902344, + "grad_norm_var": 0.022221697868613433, + "learning_rate": 0.0001, + "loss": 61.3096, + "loss/crossentropy": 2.7802655696868896, + "loss/hidden": 0.0, + "loss/logits": 0.23257814347743988, + "loss/reg": 58.29676818847656, + "step": 744 + }, + { + "epoch": 0.018625, + "grad_norm": 2.6750831604003906, + "grad_norm_var": 0.022313711031313233, + "learning_rate": 0.0001, + "loss": 60.9886, + "loss/crossentropy": 2.6292662620544434, + "loss/hidden": 0.0, + "loss/logits": 0.21325910091400146, + "loss/reg": 58.146026611328125, + "step": 745 + }, + { + "epoch": 0.01865, + "grad_norm": 2.910602569580078, + "grad_norm_var": 0.02443077895978618, + "learning_rate": 0.0001, + "loss": 61.2949, + "loss/crossentropy": 3.0462257862091064, + "loss/hidden": 0.0, + "loss/logits": 0.25037214159965515, + "loss/reg": 57.99826431274414, + "step": 746 + }, + { + "epoch": 0.018675, + "grad_norm": 2.7559032440185547, + "grad_norm_var": 0.023274603878721933, + "learning_rate": 0.0001, + "loss": 61.0211, + "loss/crossentropy": 2.9264190196990967, + "loss/hidden": 0.0, + "loss/logits": 0.24024531245231628, + "loss/reg": 57.85441970825195, + "step": 747 + }, + { + "epoch": 0.0187, + "grad_norm": 11.09821891784668, + "grad_norm_var": 4.385431661130277, + "learning_rate": 0.0001, + "loss": 60.7765, + "loss/crossentropy": 2.7616488933563232, + "loss/hidden": 0.0, + "loss/logits": 0.3043861985206604, + "loss/reg": 57.71049118041992, + "step": 748 + }, + { + "epoch": 0.018725, + "grad_norm": 3.4629063606262207, + "grad_norm_var": 4.355694283900243, + "learning_rate": 0.0001, + "loss": 60.7808, + "loss/crossentropy": 2.9968600273132324, + "loss/hidden": 0.0, + "loss/logits": 0.22214075922966003, + "loss/reg": 57.56179428100586, + "step": 749 + }, + { + "epoch": 0.01875, + "grad_norm": 2.9865288734436035, + "grad_norm_var": 4.361232034357083, + "learning_rate": 0.0001, + "loss": 60.3824, + "loss/crossentropy": 2.712460994720459, + "loss/hidden": 0.0, + "loss/logits": 0.25824302434921265, + "loss/reg": 57.4117431640625, + "step": 750 + }, + { + "epoch": 0.018775, + "grad_norm": 2.966188430786133, + "grad_norm_var": 4.341660332338729, + "learning_rate": 0.0001, + "loss": 60.2275, + "loss/crossentropy": 2.749971389770508, + "loss/hidden": 0.0, + "loss/logits": 0.2149219810962677, + "loss/reg": 57.26259231567383, + "step": 751 + }, + { + "epoch": 0.0188, + "grad_norm": 3.0538909435272217, + "grad_norm_var": 4.32146321783135, + "learning_rate": 0.0001, + "loss": 60.1386, + "loss/crossentropy": 2.7705466747283936, + "loss/hidden": 0.0, + "loss/logits": 0.25299209356307983, + "loss/reg": 57.11503219604492, + "step": 752 + }, + { + "epoch": 0.018825, + "grad_norm": 3.7716422080993652, + "grad_norm_var": 4.293677767872144, + "learning_rate": 0.0001, + "loss": 60.374, + "loss/crossentropy": 3.1197762489318848, + "loss/hidden": 0.0, + "loss/logits": 0.2896609902381897, + "loss/reg": 56.964542388916016, + "step": 753 + }, + { + "epoch": 0.01885, + "grad_norm": 2.8715505599975586, + "grad_norm_var": 4.29967918105209, + "learning_rate": 0.0001, + "loss": 59.6617, + "loss/crossentropy": 2.6158196926116943, + "loss/hidden": 0.0, + "loss/logits": 0.23370970785617828, + "loss/reg": 56.81219482421875, + "step": 754 + }, + { + "epoch": 0.018875, + "grad_norm": 2.87619686126709, + "grad_norm_var": 4.286335448113463, + "learning_rate": 0.0001, + "loss": 59.5822, + "loss/crossentropy": 2.6575210094451904, + "loss/hidden": 0.0, + "loss/logits": 0.26069819927215576, + "loss/reg": 56.66400146484375, + "step": 755 + }, + { + "epoch": 0.0189, + "grad_norm": 2.656797409057617, + "grad_norm_var": 4.299046394966134, + "learning_rate": 0.0001, + "loss": 59.3342, + "loss/crossentropy": 2.594022035598755, + "loss/hidden": 0.0, + "loss/logits": 0.22433573007583618, + "loss/reg": 56.515830993652344, + "step": 756 + }, + { + "epoch": 0.018925, + "grad_norm": 2.692230224609375, + "grad_norm_var": 4.291088604047604, + "learning_rate": 0.0001, + "loss": 59.2204, + "loss/crossentropy": 2.6446311473846436, + "loss/hidden": 0.0, + "loss/logits": 0.2099241316318512, + "loss/reg": 56.36582565307617, + "step": 757 + }, + { + "epoch": 0.01895, + "grad_norm": 2.687993288040161, + "grad_norm_var": 4.283193607489185, + "learning_rate": 0.0001, + "loss": 59.2018, + "loss/crossentropy": 2.7599661350250244, + "loss/hidden": 0.0, + "loss/logits": 0.22358274459838867, + "loss/reg": 56.21822738647461, + "step": 758 + }, + { + "epoch": 0.018975, + "grad_norm": 2.611598253250122, + "grad_norm_var": 4.289389567894268, + "learning_rate": 0.0001, + "loss": 59.0686, + "loss/crossentropy": 2.787243604660034, + "loss/hidden": 0.0, + "loss/logits": 0.21356835961341858, + "loss/reg": 56.06779098510742, + "step": 759 + }, + { + "epoch": 0.019, + "grad_norm": 2.4653584957122803, + "grad_norm_var": 4.31141311016122, + "learning_rate": 0.0001, + "loss": 59.0029, + "loss/crossentropy": 2.8415911197662354, + "loss/hidden": 0.0, + "loss/logits": 0.24345867335796356, + "loss/reg": 55.9178466796875, + "step": 760 + }, + { + "epoch": 0.019025, + "grad_norm": 2.8678863048553467, + "grad_norm_var": 4.2948716677726795, + "learning_rate": 0.0001, + "loss": 58.6391, + "loss/crossentropy": 2.6471433639526367, + "loss/hidden": 0.0, + "loss/logits": 0.21930553019046783, + "loss/reg": 55.772621154785156, + "step": 761 + }, + { + "epoch": 0.01905, + "grad_norm": 2.790867805480957, + "grad_norm_var": 4.303915496486924, + "learning_rate": 0.0001, + "loss": 58.5621, + "loss/crossentropy": 2.691446542739868, + "loss/hidden": 0.0, + "loss/logits": 0.2425747513771057, + "loss/reg": 55.628082275390625, + "step": 762 + }, + { + "epoch": 0.019075, + "grad_norm": 2.7855591773986816, + "grad_norm_var": 4.301370303985943, + "learning_rate": 0.0001, + "loss": 58.4557, + "loss/crossentropy": 2.732412815093994, + "loss/hidden": 0.0, + "loss/logits": 0.23795194923877716, + "loss/reg": 55.48536682128906, + "step": 763 + }, + { + "epoch": 0.0191, + "grad_norm": 2.5391337871551514, + "grad_norm_var": 0.11220097224740945, + "learning_rate": 0.0001, + "loss": 58.1866, + "loss/crossentropy": 2.628573179244995, + "loss/hidden": 0.0, + "loss/logits": 0.21366839110851288, + "loss/reg": 55.344329833984375, + "step": 764 + }, + { + "epoch": 0.019125, + "grad_norm": 2.4486775398254395, + "grad_norm_var": 0.09771899643028424, + "learning_rate": 0.0001, + "loss": 58.3236, + "loss/crossentropy": 2.8930563926696777, + "loss/hidden": 0.0, + "loss/logits": 0.22997558116912842, + "loss/reg": 55.20055389404297, + "step": 765 + }, + { + "epoch": 0.01915, + "grad_norm": 2.766298532485962, + "grad_norm_var": 0.09577246439944981, + "learning_rate": 0.0001, + "loss": 58.3324, + "loss/crossentropy": 3.025320291519165, + "loss/hidden": 0.0, + "loss/logits": 0.24967965483665466, + "loss/reg": 55.057376861572266, + "step": 766 + }, + { + "epoch": 0.019175, + "grad_norm": 3.201991558074951, + "grad_norm_var": 0.1043707670856025, + "learning_rate": 0.0001, + "loss": 58.3737, + "loss/crossentropy": 3.2072536945343018, + "loss/hidden": 0.0, + "loss/logits": 0.24961410462856293, + "loss/reg": 54.916839599609375, + "step": 767 + }, + { + "epoch": 0.0192, + "grad_norm": 2.3997886180877686, + "grad_norm_var": 0.11053669150879818, + "learning_rate": 0.0001, + "loss": 57.8128, + "loss/crossentropy": 2.814892053604126, + "loss/hidden": 0.0, + "loss/logits": 0.221253901720047, + "loss/reg": 54.776668548583984, + "step": 768 + }, + { + "epoch": 0.019225, + "grad_norm": 2.467320680618286, + "grad_norm_var": 0.04390441270999475, + "learning_rate": 0.0001, + "loss": 57.848, + "loss/crossentropy": 2.9831323623657227, + "loss/hidden": 0.0, + "loss/logits": 0.22602063417434692, + "loss/reg": 54.63887405395508, + "step": 769 + }, + { + "epoch": 0.01925, + "grad_norm": 2.8920133113861084, + "grad_norm_var": 0.04441070048479005, + "learning_rate": 0.0001, + "loss": 57.6435, + "loss/crossentropy": 2.9186885356903076, + "loss/hidden": 0.0, + "loss/logits": 0.2257421761751175, + "loss/reg": 54.49909210205078, + "step": 770 + }, + { + "epoch": 0.019275, + "grad_norm": 2.7764594554901123, + "grad_norm_var": 0.04264750323779935, + "learning_rate": 0.0001, + "loss": 56.9818, + "loss/crossentropy": 2.4131717681884766, + "loss/hidden": 0.0, + "loss/logits": 0.20915502309799194, + "loss/reg": 54.35948181152344, + "step": 771 + }, + { + "epoch": 0.0193, + "grad_norm": 2.9066452980041504, + "grad_norm_var": 0.04542215413656076, + "learning_rate": 0.0001, + "loss": 57.4967, + "loss/crossentropy": 3.0247690677642822, + "loss/hidden": 0.0, + "loss/logits": 0.2509494423866272, + "loss/reg": 54.22095489501953, + "step": 772 + }, + { + "epoch": 0.019325, + "grad_norm": 2.6702942848205566, + "grad_norm_var": 0.04549320067607141, + "learning_rate": 0.0001, + "loss": 57.237, + "loss/crossentropy": 2.915168523788452, + "loss/hidden": 0.0, + "loss/logits": 0.23676593601703644, + "loss/reg": 54.08510208129883, + "step": 773 + }, + { + "epoch": 0.01935, + "grad_norm": 2.5919129848480225, + "grad_norm_var": 0.046286340421070805, + "learning_rate": 0.0001, + "loss": 56.9803, + "loss/crossentropy": 2.8107874393463135, + "loss/hidden": 0.0, + "loss/logits": 0.2236163318157196, + "loss/reg": 53.94586181640625, + "step": 774 + }, + { + "epoch": 0.019375, + "grad_norm": 2.6954429149627686, + "grad_norm_var": 0.045750154457365015, + "learning_rate": 0.0001, + "loss": 57.0791, + "loss/crossentropy": 3.017504930496216, + "loss/hidden": 0.0, + "loss/logits": 0.2500165104866028, + "loss/reg": 53.81157684326172, + "step": 775 + }, + { + "epoch": 0.0194, + "grad_norm": 2.492471218109131, + "grad_norm_var": 0.044933029105976394, + "learning_rate": 0.0001, + "loss": 56.6907, + "loss/crossentropy": 2.7895073890686035, + "loss/hidden": 0.0, + "loss/logits": 0.2253413051366806, + "loss/reg": 53.67582702636719, + "step": 776 + }, + { + "epoch": 0.019425, + "grad_norm": 2.369546413421631, + "grad_norm_var": 0.04968441666320113, + "learning_rate": 0.0001, + "loss": 56.6367, + "loss/crossentropy": 2.9010658264160156, + "loss/hidden": 0.0, + "loss/logits": 0.1958373337984085, + "loss/reg": 53.53976058959961, + "step": 777 + }, + { + "epoch": 0.01945, + "grad_norm": 3.021898031234741, + "grad_norm_var": 0.05660028336942536, + "learning_rate": 0.0001, + "loss": 56.5493, + "loss/crossentropy": 2.893462896347046, + "loss/hidden": 0.0, + "loss/logits": 0.2516905665397644, + "loss/reg": 53.404178619384766, + "step": 778 + }, + { + "epoch": 0.019475, + "grad_norm": 2.691014528274536, + "grad_norm_var": 0.055942876476975316, + "learning_rate": 0.0001, + "loss": 55.9807, + "loss/crossentropy": 2.465963840484619, + "loss/hidden": 0.0, + "loss/logits": 0.24134577810764313, + "loss/reg": 53.27339553833008, + "step": 779 + }, + { + "epoch": 0.0195, + "grad_norm": 2.3977248668670654, + "grad_norm_var": 0.05990861359730009, + "learning_rate": 0.0001, + "loss": 56.0824, + "loss/crossentropy": 2.7291431427001953, + "loss/hidden": 0.0, + "loss/logits": 0.21200142800807953, + "loss/reg": 53.141212463378906, + "step": 780 + }, + { + "epoch": 0.019525, + "grad_norm": 2.8265068531036377, + "grad_norm_var": 0.057462358496513606, + "learning_rate": 0.0001, + "loss": 56.3862, + "loss/crossentropy": 3.13495135307312, + "loss/hidden": 0.0, + "loss/logits": 0.24010971188545227, + "loss/reg": 53.011112213134766, + "step": 781 + }, + { + "epoch": 0.01955, + "grad_norm": 2.549685001373291, + "grad_norm_var": 0.05842115228572311, + "learning_rate": 0.0001, + "loss": 55.8148, + "loss/crossentropy": 2.680000066757202, + "loss/hidden": 0.0, + "loss/logits": 0.25199833512306213, + "loss/reg": 52.88276672363281, + "step": 782 + }, + { + "epoch": 0.019575, + "grad_norm": 2.601576328277588, + "grad_norm_var": 0.03951790591236583, + "learning_rate": 0.0001, + "loss": 55.6334, + "loss/crossentropy": 2.6754848957061768, + "loss/hidden": 0.0, + "loss/logits": 0.2111392617225647, + "loss/reg": 52.746726989746094, + "step": 783 + }, + { + "epoch": 0.0196, + "grad_norm": 8.212234497070312, + "grad_norm_var": 1.9595461171198734, + "learning_rate": 0.0001, + "loss": 55.6696, + "loss/crossentropy": 2.8070499897003174, + "loss/hidden": 0.0, + "loss/logits": 0.25141945481300354, + "loss/reg": 52.61111068725586, + "step": 784 + }, + { + "epoch": 0.019625, + "grad_norm": 2.7455339431762695, + "grad_norm_var": 1.9442466683120376, + "learning_rate": 0.0001, + "loss": 55.6931, + "loss/crossentropy": 2.996835947036743, + "loss/hidden": 0.0, + "loss/logits": 0.21819031238555908, + "loss/reg": 52.47810363769531, + "step": 785 + }, + { + "epoch": 0.01965, + "grad_norm": 2.630183696746826, + "grad_norm_var": 1.9532633581534922, + "learning_rate": 0.0001, + "loss": 55.4071, + "loss/crossentropy": 2.804309844970703, + "loss/hidden": 0.0, + "loss/logits": 0.25376999378204346, + "loss/reg": 52.3490104675293, + "step": 786 + }, + { + "epoch": 0.019675, + "grad_norm": 3.049198865890503, + "grad_norm_var": 1.9493762909636376, + "learning_rate": 0.0001, + "loss": 55.0084, + "loss/crossentropy": 2.542832374572754, + "loss/hidden": 0.0, + "loss/logits": 0.24326905608177185, + "loss/reg": 52.222328186035156, + "step": 787 + }, + { + "epoch": 0.0197, + "grad_norm": 4.536539554595947, + "grad_norm_var": 2.0889857251666357, + "learning_rate": 0.0001, + "loss": 55.1162, + "loss/crossentropy": 2.8076493740081787, + "loss/hidden": 0.0, + "loss/logits": 0.21975521743297577, + "loss/reg": 52.08875274658203, + "step": 788 + }, + { + "epoch": 0.019725, + "grad_norm": 4.922837734222412, + "grad_norm_var": 2.2680069995824983, + "learning_rate": 0.0001, + "loss": 55.0792, + "loss/crossentropy": 2.878237724304199, + "loss/hidden": 0.0, + "loss/logits": 0.2420842945575714, + "loss/reg": 51.95884323120117, + "step": 789 + }, + { + "epoch": 0.01975, + "grad_norm": 2.30218243598938, + "grad_norm_var": 2.2994830337610286, + "learning_rate": 0.0001, + "loss": 54.8028, + "loss/crossentropy": 2.758139133453369, + "loss/hidden": 0.0, + "loss/logits": 0.2122175395488739, + "loss/reg": 51.83245086669922, + "step": 790 + }, + { + "epoch": 0.019775, + "grad_norm": 2.6652355194091797, + "grad_norm_var": 2.3017848488088544, + "learning_rate": 0.0001, + "loss": 54.6171, + "loss/crossentropy": 2.6950416564941406, + "loss/hidden": 0.0, + "loss/logits": 0.2227291464805603, + "loss/reg": 51.699317932128906, + "step": 791 + }, + { + "epoch": 0.0198, + "grad_norm": 2.5915586948394775, + "grad_norm_var": 2.29237841360286, + "learning_rate": 0.0001, + "loss": 54.58, + "loss/crossentropy": 2.798182487487793, + "loss/hidden": 0.0, + "loss/logits": 0.21353884041309357, + "loss/reg": 51.568267822265625, + "step": 792 + }, + { + "epoch": 0.019825, + "grad_norm": 2.6132395267486572, + "grad_norm_var": 2.2672515903509027, + "learning_rate": 0.0001, + "loss": 54.4863, + "loss/crossentropy": 2.8284451961517334, + "loss/hidden": 0.0, + "loss/logits": 0.22251488268375397, + "loss/reg": 51.43537902832031, + "step": 793 + }, + { + "epoch": 0.01985, + "grad_norm": 2.9160501956939697, + "grad_norm_var": 2.2714860685983003, + "learning_rate": 0.0001, + "loss": 54.4318, + "loss/crossentropy": 2.8874566555023193, + "loss/hidden": 0.0, + "loss/logits": 0.24243222177028656, + "loss/reg": 51.301944732666016, + "step": 794 + }, + { + "epoch": 0.019875, + "grad_norm": 2.767122983932495, + "grad_norm_var": 2.266016244984087, + "learning_rate": 0.0001, + "loss": 53.9738, + "loss/crossentropy": 2.5667829513549805, + "loss/hidden": 0.0, + "loss/logits": 0.2378443330526352, + "loss/reg": 51.16920852661133, + "step": 795 + }, + { + "epoch": 0.0199, + "grad_norm": 2.9074504375457764, + "grad_norm_var": 2.222940734299857, + "learning_rate": 0.0001, + "loss": 53.9377, + "loss/crossentropy": 2.659839391708374, + "loss/hidden": 0.0, + "loss/logits": 0.23761096596717834, + "loss/reg": 51.040260314941406, + "step": 796 + }, + { + "epoch": 0.019925, + "grad_norm": 2.6332762241363525, + "grad_norm_var": 2.237533280064099, + "learning_rate": 0.0001, + "loss": 53.8857, + "loss/crossentropy": 2.7650234699249268, + "loss/hidden": 0.0, + "loss/logits": 0.21053263545036316, + "loss/reg": 50.91017532348633, + "step": 797 + }, + { + "epoch": 0.01995, + "grad_norm": 2.6881556510925293, + "grad_norm_var": 2.225058902631474, + "learning_rate": 0.0001, + "loss": 53.6563, + "loss/crossentropy": 2.6306800842285156, + "loss/hidden": 0.0, + "loss/logits": 0.24274012446403503, + "loss/reg": 50.78291320800781, + "step": 798 + }, + { + "epoch": 0.019975, + "grad_norm": 2.7099571228027344, + "grad_norm_var": 2.215716208024157, + "learning_rate": 0.0001, + "loss": 53.4381, + "loss/crossentropy": 2.52323842048645, + "loss/hidden": 0.0, + "loss/logits": 0.259515643119812, + "loss/reg": 50.65534591674805, + "step": 799 + }, + { + "epoch": 0.02, + "grad_norm": 2.960604429244995, + "grad_norm_var": 0.5037824266901583, + "learning_rate": 0.0001, + "loss": 53.5623, + "loss/crossentropy": 2.7882955074310303, + "loss/hidden": 0.0, + "loss/logits": 0.24377551674842834, + "loss/reg": 50.53020095825195, + "step": 800 + }, + { + "epoch": 0.020025, + "grad_norm": 2.7040579319000244, + "grad_norm_var": 0.505172444748995, + "learning_rate": 0.0001, + "loss": 53.4338, + "loss/crossentropy": 2.8009700775146484, + "loss/hidden": 0.0, + "loss/logits": 0.2242647111415863, + "loss/reg": 50.408573150634766, + "step": 801 + }, + { + "epoch": 0.02005, + "grad_norm": 2.7675962448120117, + "grad_norm_var": 0.5000376610377392, + "learning_rate": 0.0001, + "loss": 53.1763, + "loss/crossentropy": 2.6563568115234375, + "loss/hidden": 0.0, + "loss/logits": 0.23715972900390625, + "loss/reg": 50.28279113769531, + "step": 802 + }, + { + "epoch": 0.020075, + "grad_norm": 2.9913876056671143, + "grad_norm_var": 0.49973967585988155, + "learning_rate": 0.0001, + "loss": 53.2435, + "loss/crossentropy": 2.856863498687744, + "loss/hidden": 0.0, + "loss/logits": 0.22863171994686127, + "loss/reg": 50.158050537109375, + "step": 803 + }, + { + "epoch": 0.0201, + "grad_norm": 2.579055070877075, + "grad_norm_var": 0.3329253447165852, + "learning_rate": 0.0001, + "loss": 53.0455, + "loss/crossentropy": 2.7912509441375732, + "loss/hidden": 0.0, + "loss/logits": 0.21997642517089844, + "loss/reg": 50.0342903137207, + "step": 804 + }, + { + "epoch": 0.020125, + "grad_norm": 2.906846046447754, + "grad_norm_var": 0.03177485529399533, + "learning_rate": 0.0001, + "loss": 52.9991, + "loss/crossentropy": 2.8479995727539062, + "loss/hidden": 0.0, + "loss/logits": 0.24032440781593323, + "loss/reg": 49.91073989868164, + "step": 805 + }, + { + "epoch": 0.02015, + "grad_norm": 3.0859761238098145, + "grad_norm_var": 0.025305915418744006, + "learning_rate": 0.0001, + "loss": 52.9709, + "loss/crossentropy": 2.920821189880371, + "loss/hidden": 0.0, + "loss/logits": 0.26482486724853516, + "loss/reg": 49.78524398803711, + "step": 806 + }, + { + "epoch": 0.020175, + "grad_norm": 2.7434208393096924, + "grad_norm_var": 0.02448665601768667, + "learning_rate": 0.0001, + "loss": 52.9071, + "loss/crossentropy": 3.0034008026123047, + "loss/hidden": 0.0, + "loss/logits": 0.24188174307346344, + "loss/reg": 49.66181945800781, + "step": 807 + }, + { + "epoch": 0.0202, + "grad_norm": 2.88177227973938, + "grad_norm_var": 0.02225149356486682, + "learning_rate": 0.0001, + "loss": 52.4653, + "loss/crossentropy": 2.6840085983276367, + "loss/hidden": 0.0, + "loss/logits": 0.245322123169899, + "loss/reg": 49.53594207763672, + "step": 808 + }, + { + "epoch": 0.020225, + "grad_norm": 3.1109049320220947, + "grad_norm_var": 0.02510624438714686, + "learning_rate": 0.0001, + "loss": 52.547, + "loss/crossentropy": 2.8825902938842773, + "loss/hidden": 0.0, + "loss/logits": 0.2539767920970917, + "loss/reg": 49.41044616699219, + "step": 809 + }, + { + "epoch": 0.02025, + "grad_norm": 2.4495651721954346, + "grad_norm_var": 0.033640854815441185, + "learning_rate": 0.0001, + "loss": 51.7535, + "loss/crossentropy": 2.28265380859375, + "loss/hidden": 0.0, + "loss/logits": 0.18538084626197815, + "loss/reg": 49.28546905517578, + "step": 810 + }, + { + "epoch": 0.020275, + "grad_norm": 2.864192247390747, + "grad_norm_var": 0.03373374858250576, + "learning_rate": 0.0001, + "loss": 52.0966, + "loss/crossentropy": 2.682021379470825, + "loss/hidden": 0.0, + "loss/logits": 0.2524881362915039, + "loss/reg": 49.162086486816406, + "step": 811 + }, + { + "epoch": 0.0203, + "grad_norm": 2.7251250743865967, + "grad_norm_var": 0.03347917919778235, + "learning_rate": 0.0001, + "loss": 52.1571, + "loss/crossentropy": 2.893673896789551, + "loss/hidden": 0.0, + "loss/logits": 0.2223658412694931, + "loss/reg": 49.04104232788086, + "step": 812 + }, + { + "epoch": 0.020325, + "grad_norm": 2.496249198913574, + "grad_norm_var": 0.037700954552336914, + "learning_rate": 0.0001, + "loss": 51.914, + "loss/crossentropy": 2.755688190460205, + "loss/hidden": 0.0, + "loss/logits": 0.23637332022190094, + "loss/reg": 48.92195510864258, + "step": 813 + }, + { + "epoch": 0.02035, + "grad_norm": 2.5698087215423584, + "grad_norm_var": 0.04020791484434175, + "learning_rate": 0.0001, + "loss": 51.7827, + "loss/crossentropy": 2.7431833744049072, + "loss/hidden": 0.0, + "loss/logits": 0.23644611239433289, + "loss/reg": 48.80311584472656, + "step": 814 + }, + { + "epoch": 0.020375, + "grad_norm": 2.952713966369629, + "grad_norm_var": 0.04148941052159193, + "learning_rate": 0.0001, + "loss": 51.7364, + "loss/crossentropy": 2.824826717376709, + "loss/hidden": 0.0, + "loss/logits": 0.23083820939064026, + "loss/reg": 48.68075942993164, + "step": 815 + }, + { + "epoch": 0.0204, + "grad_norm": 2.635850191116333, + "grad_norm_var": 0.0410977076632508, + "learning_rate": 0.0001, + "loss": 51.7439, + "loss/crossentropy": 2.93487548828125, + "loss/hidden": 0.0, + "loss/logits": 0.24603211879730225, + "loss/reg": 48.56298828125, + "step": 816 + }, + { + "epoch": 0.020425, + "grad_norm": 2.40620493888855, + "grad_norm_var": 0.049620007024852225, + "learning_rate": 0.0001, + "loss": 51.304, + "loss/crossentropy": 2.656850814819336, + "loss/hidden": 0.0, + "loss/logits": 0.2041395902633667, + "loss/reg": 48.44300079345703, + "step": 817 + }, + { + "epoch": 0.02045, + "grad_norm": 2.646141290664673, + "grad_norm_var": 0.05042569960910441, + "learning_rate": 0.0001, + "loss": 51.235, + "loss/crossentropy": 2.664440155029297, + "loss/hidden": 0.0, + "loss/logits": 0.2458214908838272, + "loss/reg": 48.3246955871582, + "step": 818 + }, + { + "epoch": 0.020475, + "grad_norm": 2.8259634971618652, + "grad_norm_var": 0.04687417195843082, + "learning_rate": 0.0001, + "loss": 51.6837, + "loss/crossentropy": 3.2239608764648438, + "loss/hidden": 0.0, + "loss/logits": 0.2503930926322937, + "loss/reg": 48.2093505859375, + "step": 819 + }, + { + "epoch": 0.0205, + "grad_norm": 2.993224620819092, + "grad_norm_var": 0.04857006914218402, + "learning_rate": 0.0001, + "loss": 51.27, + "loss/crossentropy": 2.8996071815490723, + "loss/hidden": 0.0, + "loss/logits": 0.27634817361831665, + "loss/reg": 48.094078063964844, + "step": 820 + }, + { + "epoch": 0.020525, + "grad_norm": 3.131995916366577, + "grad_norm_var": 0.05589532321223274, + "learning_rate": 0.0001, + "loss": 51.3641, + "loss/crossentropy": 3.1158416271209717, + "loss/hidden": 0.0, + "loss/logits": 0.272818386554718, + "loss/reg": 47.975460052490234, + "step": 821 + }, + { + "epoch": 0.02055, + "grad_norm": 2.6322062015533447, + "grad_norm_var": 0.05040003879316449, + "learning_rate": 0.0001, + "loss": 50.9655, + "loss/crossentropy": 2.874999761581421, + "loss/hidden": 0.0, + "loss/logits": 0.2292400300502777, + "loss/reg": 47.86125564575195, + "step": 822 + }, + { + "epoch": 0.020575, + "grad_norm": 2.631922960281372, + "grad_norm_var": 0.05133554293392611, + "learning_rate": 0.0001, + "loss": 50.457, + "loss/crossentropy": 2.5026562213897705, + "loss/hidden": 0.0, + "loss/logits": 0.20776653289794922, + "loss/reg": 47.74656677246094, + "step": 823 + }, + { + "epoch": 0.0206, + "grad_norm": 2.881382942199707, + "grad_norm_var": 0.051328562127300144, + "learning_rate": 0.0001, + "loss": 50.542, + "loss/crossentropy": 2.688274621963501, + "loss/hidden": 0.0, + "loss/logits": 0.22304531931877136, + "loss/reg": 47.63066482543945, + "step": 824 + }, + { + "epoch": 0.020625, + "grad_norm": 2.683779239654541, + "grad_norm_var": 0.04201158273686285, + "learning_rate": 0.0001, + "loss": 50.5567, + "loss/crossentropy": 2.7942123413085938, + "loss/hidden": 0.0, + "loss/logits": 0.2437441498041153, + "loss/reg": 47.518707275390625, + "step": 825 + }, + { + "epoch": 0.02065, + "grad_norm": 2.7014639377593994, + "grad_norm_var": 0.03688115494732453, + "learning_rate": 0.0001, + "loss": 50.5527, + "loss/crossentropy": 2.8857181072235107, + "loss/hidden": 0.0, + "loss/logits": 0.26020658016204834, + "loss/reg": 47.40679168701172, + "step": 826 + }, + { + "epoch": 0.020675, + "grad_norm": 13.778948783874512, + "grad_norm_var": 7.668981462187241, + "learning_rate": 0.0001, + "loss": 50.3418, + "loss/crossentropy": 2.836272716522217, + "loss/hidden": 0.0, + "loss/logits": 0.213333398103714, + "loss/reg": 47.29219436645508, + "step": 827 + }, + { + "epoch": 0.0207, + "grad_norm": 2.6730599403381348, + "grad_norm_var": 7.673962997287033, + "learning_rate": 0.0001, + "loss": 50.3743, + "loss/crossentropy": 2.9492764472961426, + "loss/hidden": 0.0, + "loss/logits": 0.24545426666736603, + "loss/reg": 47.17961120605469, + "step": 828 + }, + { + "epoch": 0.020725, + "grad_norm": 2.44629168510437, + "grad_norm_var": 7.680239164125849, + "learning_rate": 0.0001, + "loss": 49.7865, + "loss/crossentropy": 2.5040016174316406, + "loss/hidden": 0.0, + "loss/logits": 0.21603502333164215, + "loss/reg": 47.06645965576172, + "step": 829 + }, + { + "epoch": 0.02075, + "grad_norm": 2.927917003631592, + "grad_norm_var": 7.6480446113119305, + "learning_rate": 0.0001, + "loss": 50.4814, + "loss/crossentropy": 3.270429849624634, + "loss/hidden": 0.0, + "loss/logits": 0.25596797466278076, + "loss/reg": 46.9549674987793, + "step": 830 + }, + { + "epoch": 0.020775, + "grad_norm": 3.077221155166626, + "grad_norm_var": 7.641018421905691, + "learning_rate": 0.0001, + "loss": 50.196, + "loss/crossentropy": 3.097292423248291, + "loss/hidden": 0.0, + "loss/logits": 0.2553516924381256, + "loss/reg": 46.843326568603516, + "step": 831 + }, + { + "epoch": 0.0208, + "grad_norm": 3.5145583152770996, + "grad_norm_var": 7.5948155070728856, + "learning_rate": 0.0001, + "loss": 49.5672, + "loss/crossentropy": 2.601334571838379, + "loss/hidden": 0.0, + "loss/logits": 0.2364489734172821, + "loss/reg": 46.729393005371094, + "step": 832 + }, + { + "epoch": 0.020825, + "grad_norm": 3.11055326461792, + "grad_norm_var": 7.523380552917458, + "learning_rate": 0.0001, + "loss": 49.711, + "loss/crossentropy": 2.8619778156280518, + "loss/hidden": 0.0, + "loss/logits": 0.2326866090297699, + "loss/reg": 46.61635971069336, + "step": 833 + }, + { + "epoch": 0.02085, + "grad_norm": 3.700695276260376, + "grad_norm_var": 7.467056690865655, + "learning_rate": 0.0001, + "loss": 49.5927, + "loss/crossentropy": 2.8446598052978516, + "loss/hidden": 0.0, + "loss/logits": 0.2441275715827942, + "loss/reg": 46.50389099121094, + "step": 834 + }, + { + "epoch": 0.020875, + "grad_norm": 2.789363145828247, + "grad_norm_var": 7.470951661037448, + "learning_rate": 0.0001, + "loss": 49.4515, + "loss/crossentropy": 2.822880268096924, + "loss/hidden": 0.0, + "loss/logits": 0.23577329516410828, + "loss/reg": 46.39282989501953, + "step": 835 + }, + { + "epoch": 0.0209, + "grad_norm": 2.612974166870117, + "grad_norm_var": 7.510988449534897, + "learning_rate": 0.0001, + "loss": 49.3286, + "loss/crossentropy": 2.8413946628570557, + "loss/hidden": 0.0, + "loss/logits": 0.20617251098155975, + "loss/reg": 46.281070709228516, + "step": 836 + }, + { + "epoch": 0.020925, + "grad_norm": 2.69990611076355, + "grad_norm_var": 7.548519312088183, + "learning_rate": 0.0001, + "loss": 49.2338, + "loss/crossentropy": 2.829338550567627, + "loss/hidden": 0.0, + "loss/logits": 0.23464342951774597, + "loss/reg": 46.16982650756836, + "step": 837 + }, + { + "epoch": 0.02095, + "grad_norm": 3.1259517669677734, + "grad_norm_var": 7.503078866049228, + "learning_rate": 0.0001, + "loss": 48.9702, + "loss/crossentropy": 2.642885208129883, + "loss/hidden": 0.0, + "loss/logits": 0.2709121108055115, + "loss/reg": 46.05638885498047, + "step": 838 + }, + { + "epoch": 0.020975, + "grad_norm": 2.6453773975372314, + "grad_norm_var": 7.50138088085608, + "learning_rate": 0.0001, + "loss": 49.101, + "loss/crossentropy": 2.90779972076416, + "loss/hidden": 0.0, + "loss/logits": 0.2505376935005188, + "loss/reg": 45.94264602661133, + "step": 839 + }, + { + "epoch": 0.021, + "grad_norm": 2.7109532356262207, + "grad_norm_var": 7.519198653159886, + "learning_rate": 0.0001, + "loss": 48.8333, + "loss/crossentropy": 2.7746942043304443, + "loss/hidden": 0.0, + "loss/logits": 0.23057350516319275, + "loss/reg": 45.8280029296875, + "step": 840 + }, + { + "epoch": 0.021025, + "grad_norm": 2.9908559322357178, + "grad_norm_var": 7.488604931370973, + "learning_rate": 0.0001, + "loss": 48.7675, + "loss/crossentropy": 2.7737483978271484, + "loss/hidden": 0.0, + "loss/logits": 0.27381837368011475, + "loss/reg": 45.71989822387695, + "step": 841 + }, + { + "epoch": 0.02105, + "grad_norm": 2.8714518547058105, + "grad_norm_var": 7.47017858293949, + "learning_rate": 0.0001, + "loss": 48.9529, + "loss/crossentropy": 3.073143243789673, + "loss/hidden": 0.0, + "loss/logits": 0.26654019951820374, + "loss/reg": 45.61322021484375, + "step": 842 + }, + { + "epoch": 0.021075, + "grad_norm": 3.0701894760131836, + "grad_norm_var": 0.11045821533903463, + "learning_rate": 0.0001, + "loss": 48.3711, + "loss/crossentropy": 2.606783390045166, + "loss/hidden": 0.0, + "loss/logits": 0.26009494066238403, + "loss/reg": 45.504241943359375, + "step": 843 + }, + { + "epoch": 0.0211, + "grad_norm": 2.5917296409606934, + "grad_norm_var": 0.11371707836486636, + "learning_rate": 0.0001, + "loss": 48.4286, + "loss/crossentropy": 2.8071954250335693, + "loss/hidden": 0.0, + "loss/logits": 0.2240188866853714, + "loss/reg": 45.39739227294922, + "step": 844 + }, + { + "epoch": 0.021125, + "grad_norm": 2.990241289138794, + "grad_norm_var": 0.09710077586091354, + "learning_rate": 0.0001, + "loss": 48.4181, + "loss/crossentropy": 2.8722949028015137, + "loss/hidden": 0.0, + "loss/logits": 0.25466662645339966, + "loss/reg": 45.29114532470703, + "step": 845 + }, + { + "epoch": 0.02115, + "grad_norm": 2.7038068771362305, + "grad_norm_var": 0.10132916045419596, + "learning_rate": 0.0001, + "loss": 48.5483, + "loss/crossentropy": 3.1085779666900635, + "loss/hidden": 0.0, + "loss/logits": 0.25524720549583435, + "loss/reg": 45.18445587158203, + "step": 846 + }, + { + "epoch": 0.021175, + "grad_norm": 2.6508195400238037, + "grad_norm_var": 0.10548054452361626, + "learning_rate": 0.0001, + "loss": 48.4558, + "loss/crossentropy": 3.1368627548217773, + "loss/hidden": 0.0, + "loss/logits": 0.23976629972457886, + "loss/reg": 45.079139709472656, + "step": 847 + }, + { + "epoch": 0.0212, + "grad_norm": 2.988497734069824, + "grad_norm_var": 0.0813341385370144, + "learning_rate": 0.0001, + "loss": 48.1072, + "loss/crossentropy": 2.8759114742279053, + "loss/hidden": 0.0, + "loss/logits": 0.25515347719192505, + "loss/reg": 44.97610855102539, + "step": 848 + }, + { + "epoch": 0.021225, + "grad_norm": 2.769603729248047, + "grad_norm_var": 0.0786111905047143, + "learning_rate": 0.0001, + "loss": 48.2049, + "loss/crossentropy": 3.070866346359253, + "loss/hidden": 0.0, + "loss/logits": 0.258023738861084, + "loss/reg": 44.8759765625, + "step": 849 + }, + { + "epoch": 0.02125, + "grad_norm": 2.505613327026367, + "grad_norm_var": 0.03543295310148456, + "learning_rate": 0.0001, + "loss": 47.7345, + "loss/crossentropy": 2.7244465351104736, + "loss/hidden": 0.0, + "loss/logits": 0.2349836379289627, + "loss/reg": 44.77507019042969, + "step": 850 + }, + { + "epoch": 0.021275, + "grad_norm": 2.5850486755371094, + "grad_norm_var": 0.038190999955643436, + "learning_rate": 0.0001, + "loss": 47.6796, + "loss/crossentropy": 2.797024726867676, + "loss/hidden": 0.0, + "loss/logits": 0.21167223155498505, + "loss/reg": 44.670875549316406, + "step": 851 + }, + { + "epoch": 0.0213, + "grad_norm": 3.048123359680176, + "grad_norm_var": 0.04021511405729043, + "learning_rate": 0.0001, + "loss": 47.6982, + "loss/crossentropy": 2.882145881652832, + "loss/hidden": 0.0, + "loss/logits": 0.25044912099838257, + "loss/reg": 44.56555938720703, + "step": 852 + }, + { + "epoch": 0.021325, + "grad_norm": 2.6726913452148438, + "grad_norm_var": 0.04065821192390615, + "learning_rate": 0.0001, + "loss": 47.6222, + "loss/crossentropy": 2.9055726528167725, + "loss/hidden": 0.0, + "loss/logits": 0.2560499608516693, + "loss/reg": 44.460567474365234, + "step": 853 + }, + { + "epoch": 0.02135, + "grad_norm": 2.616454601287842, + "grad_norm_var": 0.03525310786582168, + "learning_rate": 0.0001, + "loss": 47.3723, + "loss/crossentropy": 2.7777538299560547, + "loss/hidden": 0.0, + "loss/logits": 0.23695862293243408, + "loss/reg": 44.357627868652344, + "step": 854 + }, + { + "epoch": 0.021375, + "grad_norm": 2.6965930461883545, + "grad_norm_var": 0.03452699702972097, + "learning_rate": 0.0001, + "loss": 47.1636, + "loss/crossentropy": 2.6849050521850586, + "loss/hidden": 0.0, + "loss/logits": 0.22069215774536133, + "loss/reg": 44.257965087890625, + "step": 855 + }, + { + "epoch": 0.0214, + "grad_norm": 2.5102341175079346, + "grad_norm_var": 0.0388638936666986, + "learning_rate": 0.0001, + "loss": 47.262, + "loss/crossentropy": 2.860992908477783, + "loss/hidden": 0.0, + "loss/logits": 0.24046388268470764, + "loss/reg": 44.160499572753906, + "step": 856 + }, + { + "epoch": 0.021425, + "grad_norm": 2.9143855571746826, + "grad_norm_var": 0.036940528281403574, + "learning_rate": 0.0001, + "loss": 47.0549, + "loss/crossentropy": 2.7531962394714355, + "loss/hidden": 0.0, + "loss/logits": 0.23869255185127258, + "loss/reg": 44.063053131103516, + "step": 857 + }, + { + "epoch": 0.02145, + "grad_norm": 2.7312750816345215, + "grad_norm_var": 0.03611533132415896, + "learning_rate": 0.0001, + "loss": 47.2825, + "loss/crossentropy": 3.063075304031372, + "loss/hidden": 0.0, + "loss/logits": 0.2570626139640808, + "loss/reg": 43.962337493896484, + "step": 858 + }, + { + "epoch": 0.021475, + "grad_norm": 2.6700384616851807, + "grad_norm_var": 0.029190745995408444, + "learning_rate": 0.0001, + "loss": 46.8626, + "loss/crossentropy": 2.765472173690796, + "loss/hidden": 0.0, + "loss/logits": 0.23290973901748657, + "loss/reg": 43.86418533325195, + "step": 859 + }, + { + "epoch": 0.0215, + "grad_norm": 2.5979349613189697, + "grad_norm_var": 0.029080552835625658, + "learning_rate": 0.0001, + "loss": 46.8266, + "loss/crossentropy": 2.843446969985962, + "loss/hidden": 0.0, + "loss/logits": 0.22045856714248657, + "loss/reg": 43.76265335083008, + "step": 860 + }, + { + "epoch": 0.021525, + "grad_norm": 2.8044228553771973, + "grad_norm_var": 0.0247465536201607, + "learning_rate": 0.0001, + "loss": 46.8942, + "loss/crossentropy": 2.9794631004333496, + "loss/hidden": 0.0, + "loss/logits": 0.25055602192878723, + "loss/reg": 43.664146423339844, + "step": 861 + }, + { + "epoch": 0.02155, + "grad_norm": 3.0274248123168945, + "grad_norm_var": 0.03074023090764418, + "learning_rate": 0.0001, + "loss": 46.4618, + "loss/crossentropy": 2.6372880935668945, + "loss/hidden": 0.0, + "loss/logits": 0.26163622736930847, + "loss/reg": 43.56292724609375, + "step": 862 + }, + { + "epoch": 0.021575, + "grad_norm": 2.771188974380493, + "grad_norm_var": 0.030265496058056365, + "learning_rate": 0.0001, + "loss": 46.687, + "loss/crossentropy": 2.977721691131592, + "loss/hidden": 0.0, + "loss/logits": 0.24795976281166077, + "loss/reg": 43.46126937866211, + "step": 863 + }, + { + "epoch": 0.0216, + "grad_norm": 3.0198278427124023, + "grad_norm_var": 0.031346752653106096, + "learning_rate": 0.0001, + "loss": 46.4047, + "loss/crossentropy": 2.805306911468506, + "loss/hidden": 0.0, + "loss/logits": 0.23715007305145264, + "loss/reg": 43.36224365234375, + "step": 864 + }, + { + "epoch": 0.021625, + "grad_norm": 2.8970999717712402, + "grad_norm_var": 0.032758795573165383, + "learning_rate": 0.0001, + "loss": 46.3235, + "loss/crossentropy": 2.81503963470459, + "loss/hidden": 0.0, + "loss/logits": 0.2449081391096115, + "loss/reg": 43.263526916503906, + "step": 865 + }, + { + "epoch": 0.02165, + "grad_norm": 2.6958978176116943, + "grad_norm_var": 0.028713014180188404, + "learning_rate": 0.0001, + "loss": 46.4609, + "loss/crossentropy": 3.0649611949920654, + "loss/hidden": 0.0, + "loss/logits": 0.23137107491493225, + "loss/reg": 43.164615631103516, + "step": 866 + }, + { + "epoch": 0.021675, + "grad_norm": 2.738786458969116, + "grad_norm_var": 0.026477629275204133, + "learning_rate": 0.0001, + "loss": 46.2192, + "loss/crossentropy": 2.900941848754883, + "loss/hidden": 0.0, + "loss/logits": 0.25012895464897156, + "loss/reg": 43.06816482543945, + "step": 867 + }, + { + "epoch": 0.0217, + "grad_norm": 2.6869115829467773, + "grad_norm_var": 0.021515463936426234, + "learning_rate": 0.0001, + "loss": 46.0673, + "loss/crossentropy": 2.8564064502716064, + "loss/hidden": 0.0, + "loss/logits": 0.23792710900306702, + "loss/reg": 42.972923278808594, + "step": 868 + }, + { + "epoch": 0.021725, + "grad_norm": 2.827066421508789, + "grad_norm_var": 0.02134784747631405, + "learning_rate": 0.0001, + "loss": 45.8876, + "loss/crossentropy": 2.7518844604492188, + "loss/hidden": 0.0, + "loss/logits": 0.2576528787612915, + "loss/reg": 42.87803268432617, + "step": 869 + }, + { + "epoch": 0.02175, + "grad_norm": 2.626676321029663, + "grad_norm_var": 0.02115486089260775, + "learning_rate": 0.0001, + "loss": 45.7523, + "loss/crossentropy": 2.7327208518981934, + "loss/hidden": 0.0, + "loss/logits": 0.23792991042137146, + "loss/reg": 42.78163528442383, + "step": 870 + }, + { + "epoch": 0.021775, + "grad_norm": 2.7007803916931152, + "grad_norm_var": 0.021118609979900307, + "learning_rate": 0.0001, + "loss": 45.7201, + "loss/crossentropy": 2.7678470611572266, + "loss/hidden": 0.0, + "loss/logits": 0.26777875423431396, + "loss/reg": 42.68449020385742, + "step": 871 + }, + { + "epoch": 0.0218, + "grad_norm": 2.867694616317749, + "grad_norm_var": 0.01702195773885459, + "learning_rate": 0.0001, + "loss": 45.5534, + "loss/crossentropy": 2.7220120429992676, + "loss/hidden": 0.0, + "loss/logits": 0.24349060654640198, + "loss/reg": 42.58792495727539, + "step": 872 + }, + { + "epoch": 0.021825, + "grad_norm": 2.7054524421691895, + "grad_norm_var": 0.016176199233639704, + "learning_rate": 0.0001, + "loss": 45.5576, + "loss/crossentropy": 2.821178913116455, + "loss/hidden": 0.0, + "loss/logits": 0.24668864905834198, + "loss/reg": 42.489776611328125, + "step": 873 + }, + { + "epoch": 0.02185, + "grad_norm": 2.7255043983459473, + "grad_norm_var": 0.01621040773991519, + "learning_rate": 0.0001, + "loss": 45.2197, + "loss/crossentropy": 2.5901880264282227, + "loss/hidden": 0.0, + "loss/logits": 0.24032941460609436, + "loss/reg": 42.389225006103516, + "step": 874 + }, + { + "epoch": 0.021875, + "grad_norm": 2.680649757385254, + "grad_norm_var": 0.016072239099798935, + "learning_rate": 0.0001, + "loss": 45.4495, + "loss/crossentropy": 2.920884132385254, + "loss/hidden": 0.0, + "loss/logits": 0.24124376475811005, + "loss/reg": 42.28740692138672, + "step": 875 + }, + { + "epoch": 0.0219, + "grad_norm": 2.7948641777038574, + "grad_norm_var": 0.013890606167317543, + "learning_rate": 0.0001, + "loss": 45.2185, + "loss/crossentropy": 2.7859625816345215, + "loss/hidden": 0.0, + "loss/logits": 0.24146077036857605, + "loss/reg": 42.191123962402344, + "step": 876 + }, + { + "epoch": 0.021925, + "grad_norm": 2.503937005996704, + "grad_norm_var": 0.018781331446677995, + "learning_rate": 0.0001, + "loss": 45.2798, + "loss/crossentropy": 2.9733173847198486, + "loss/hidden": 0.0, + "loss/logits": 0.21078920364379883, + "loss/reg": 42.09564971923828, + "step": 877 + }, + { + "epoch": 0.02195, + "grad_norm": 2.723689556121826, + "grad_norm_var": 0.013994920468044824, + "learning_rate": 0.0001, + "loss": 45.1466, + "loss/crossentropy": 2.9063451290130615, + "loss/hidden": 0.0, + "loss/logits": 0.24084623157978058, + "loss/reg": 41.999412536621094, + "step": 878 + }, + { + "epoch": 0.021975, + "grad_norm": 2.604905366897583, + "grad_norm_var": 0.015206201216361136, + "learning_rate": 0.0001, + "loss": 44.9635, + "loss/crossentropy": 2.8358519077301025, + "loss/hidden": 0.0, + "loss/logits": 0.22244781255722046, + "loss/reg": 41.905216217041016, + "step": 879 + }, + { + "epoch": 0.022, + "grad_norm": 2.6830010414123535, + "grad_norm_var": 0.009616840170906471, + "learning_rate": 0.0001, + "loss": 44.8298, + "loss/crossentropy": 2.7782702445983887, + "loss/hidden": 0.0, + "loss/logits": 0.2416587471961975, + "loss/reg": 41.80987548828125, + "step": 880 + }, + { + "epoch": 0.022025, + "grad_norm": 2.701080322265625, + "grad_norm_var": 0.007296400643871455, + "learning_rate": 0.0001, + "loss": 44.458, + "loss/crossentropy": 2.5311830043792725, + "loss/hidden": 0.0, + "loss/logits": 0.21052095293998718, + "loss/reg": 41.71625900268555, + "step": 881 + }, + { + "epoch": 0.02205, + "grad_norm": 2.5038342475891113, + "grad_norm_var": 0.009814048940694183, + "learning_rate": 0.0001, + "loss": 44.6839, + "loss/crossentropy": 2.8363115787506104, + "loss/hidden": 0.0, + "loss/logits": 0.22428202629089355, + "loss/reg": 41.623291015625, + "step": 882 + }, + { + "epoch": 0.022075, + "grad_norm": 2.757178783416748, + "grad_norm_var": 0.009949491806351792, + "learning_rate": 0.0001, + "loss": 44.6845, + "loss/crossentropy": 2.905855417251587, + "loss/hidden": 0.0, + "loss/logits": 0.2473723292350769, + "loss/reg": 41.531280517578125, + "step": 883 + }, + { + "epoch": 0.0221, + "grad_norm": 2.660141706466675, + "grad_norm_var": 0.0100171783636083, + "learning_rate": 0.0001, + "loss": 44.3141, + "loss/crossentropy": 2.6371467113494873, + "loss/hidden": 0.0, + "loss/logits": 0.23851189017295837, + "loss/reg": 41.43846893310547, + "step": 884 + }, + { + "epoch": 0.022125, + "grad_norm": 4.251846790313721, + "grad_norm_var": 0.1626166050996685, + "learning_rate": 0.0001, + "loss": 44.3927, + "loss/crossentropy": 2.787137746810913, + "loss/hidden": 0.0, + "loss/logits": 0.25860458612442017, + "loss/reg": 41.346946716308594, + "step": 885 + }, + { + "epoch": 0.02215, + "grad_norm": 2.9530351161956787, + "grad_norm_var": 0.16257111931878943, + "learning_rate": 0.0001, + "loss": 44.171, + "loss/crossentropy": 2.694733142852783, + "loss/hidden": 0.0, + "loss/logits": 0.22275252640247345, + "loss/reg": 41.25349426269531, + "step": 886 + }, + { + "epoch": 0.022175, + "grad_norm": 2.991832971572876, + "grad_norm_var": 0.1639725008568424, + "learning_rate": 0.0001, + "loss": 44.5867, + "loss/crossentropy": 3.156198501586914, + "loss/hidden": 0.0, + "loss/logits": 0.2699030637741089, + "loss/reg": 41.16058349609375, + "step": 887 + }, + { + "epoch": 0.0222, + "grad_norm": 3.1930086612701416, + "grad_norm_var": 0.1726863652995225, + "learning_rate": 0.0001, + "loss": 43.9933, + "loss/crossentropy": 2.6939613819122314, + "loss/hidden": 0.0, + "loss/logits": 0.22894969582557678, + "loss/reg": 41.07038879394531, + "step": 888 + }, + { + "epoch": 0.022225, + "grad_norm": 2.8903820514678955, + "grad_norm_var": 0.17151552786031227, + "learning_rate": 0.0001, + "loss": 44.0888, + "loss/crossentropy": 2.862319231033325, + "loss/hidden": 0.0, + "loss/logits": 0.24869811534881592, + "loss/reg": 40.97781753540039, + "step": 889 + }, + { + "epoch": 0.02225, + "grad_norm": 2.881136655807495, + "grad_norm_var": 0.17042145948309156, + "learning_rate": 0.0001, + "loss": 44.3592, + "loss/crossentropy": 3.2091801166534424, + "loss/hidden": 0.0, + "loss/logits": 0.2633001506328583, + "loss/reg": 40.88669967651367, + "step": 890 + }, + { + "epoch": 0.022275, + "grad_norm": 2.62827467918396, + "grad_norm_var": 0.17185170990455442, + "learning_rate": 0.0001, + "loss": 43.7441, + "loss/crossentropy": 2.69647479057312, + "loss/hidden": 0.0, + "loss/logits": 0.25092294812202454, + "loss/reg": 40.79666519165039, + "step": 891 + }, + { + "epoch": 0.0223, + "grad_norm": 2.436519145965576, + "grad_norm_var": 0.18287652337390886, + "learning_rate": 0.0001, + "loss": 43.7102, + "loss/crossentropy": 2.7679152488708496, + "loss/hidden": 0.0, + "loss/logits": 0.23737739026546478, + "loss/reg": 40.704925537109375, + "step": 892 + }, + { + "epoch": 0.022325, + "grad_norm": 2.700011968612671, + "grad_norm_var": 0.17661805600996155, + "learning_rate": 0.0001, + "loss": 43.6811, + "loss/crossentropy": 2.8262124061584473, + "loss/hidden": 0.0, + "loss/logits": 0.23837611079216003, + "loss/reg": 40.61653137207031, + "step": 893 + }, + { + "epoch": 0.02235, + "grad_norm": 2.5235769748687744, + "grad_norm_var": 0.18242413999566054, + "learning_rate": 0.0001, + "loss": 43.4445, + "loss/crossentropy": 2.6917617321014404, + "loss/hidden": 0.0, + "loss/logits": 0.22554537653923035, + "loss/reg": 40.527217864990234, + "step": 894 + }, + { + "epoch": 0.022375, + "grad_norm": 2.7341766357421875, + "grad_norm_var": 0.17950288283988294, + "learning_rate": 0.0001, + "loss": 43.7484, + "loss/crossentropy": 3.029411792755127, + "loss/hidden": 0.0, + "loss/logits": 0.28348681330680847, + "loss/reg": 40.43548583984375, + "step": 895 + }, + { + "epoch": 0.0224, + "grad_norm": 2.659266233444214, + "grad_norm_var": 0.18004463619057087, + "learning_rate": 0.0001, + "loss": 43.1614, + "loss/crossentropy": 2.5794694423675537, + "loss/hidden": 0.0, + "loss/logits": 0.23672150075435638, + "loss/reg": 40.34519577026367, + "step": 896 + }, + { + "epoch": 0.022425, + "grad_norm": 3.1245830059051514, + "grad_norm_var": 0.1833206141640287, + "learning_rate": 0.0001, + "loss": 43.5047, + "loss/crossentropy": 3.009214162826538, + "loss/hidden": 0.0, + "loss/logits": 0.24004200100898743, + "loss/reg": 40.25539779663086, + "step": 897 + }, + { + "epoch": 0.02245, + "grad_norm": 3.283797264099121, + "grad_norm_var": 0.1834653295253453, + "learning_rate": 0.0001, + "loss": 42.9276, + "loss/crossentropy": 2.5301198959350586, + "loss/hidden": 0.0, + "loss/logits": 0.23050135374069214, + "loss/reg": 40.16700744628906, + "step": 898 + }, + { + "epoch": 0.022475, + "grad_norm": 2.4279603958129883, + "grad_norm_var": 0.19724598877930527, + "learning_rate": 0.0001, + "loss": 43.0253, + "loss/crossentropy": 2.7136290073394775, + "loss/hidden": 0.0, + "loss/logits": 0.23277553915977478, + "loss/reg": 40.078914642333984, + "step": 899 + }, + { + "epoch": 0.0225, + "grad_norm": 2.5088298320770264, + "grad_norm_var": 0.2034398420188303, + "learning_rate": 0.0001, + "loss": 43.1582, + "loss/crossentropy": 2.948103189468384, + "loss/hidden": 0.0, + "loss/logits": 0.21640148758888245, + "loss/reg": 39.99374008178711, + "step": 900 + }, + { + "epoch": 0.022525, + "grad_norm": 2.6329402923583984, + "grad_norm_var": 0.07258482335469481, + "learning_rate": 0.0001, + "loss": 43.0828, + "loss/crossentropy": 2.9187188148498535, + "loss/hidden": 0.0, + "loss/logits": 0.25746428966522217, + "loss/reg": 39.90663528442383, + "step": 901 + }, + { + "epoch": 0.02255, + "grad_norm": 2.9308879375457764, + "grad_norm_var": 0.07212100124237182, + "learning_rate": 0.0001, + "loss": 42.8767, + "loss/crossentropy": 2.779430866241455, + "loss/hidden": 0.0, + "loss/logits": 0.2763053774833679, + "loss/reg": 39.82095718383789, + "step": 902 + }, + { + "epoch": 0.022575, + "grad_norm": 2.6100316047668457, + "grad_norm_var": 0.07066177999980709, + "learning_rate": 0.0001, + "loss": 42.7168, + "loss/crossentropy": 2.7670066356658936, + "loss/hidden": 0.0, + "loss/logits": 0.21381208300590515, + "loss/reg": 39.73594665527344, + "step": 903 + }, + { + "epoch": 0.0226, + "grad_norm": 2.6517529487609863, + "grad_norm_var": 0.057746798972484, + "learning_rate": 0.0001, + "loss": 42.6053, + "loss/crossentropy": 2.7067525386810303, + "loss/hidden": 0.0, + "loss/logits": 0.2483087182044983, + "loss/reg": 39.65021896362305, + "step": 904 + }, + { + "epoch": 0.022625, + "grad_norm": 2.896390914916992, + "grad_norm_var": 0.057880348550103614, + "learning_rate": 0.0001, + "loss": 42.4123, + "loss/crossentropy": 2.6049654483795166, + "loss/hidden": 0.0, + "loss/logits": 0.24248483777046204, + "loss/reg": 39.56484603881836, + "step": 905 + }, + { + "epoch": 0.02265, + "grad_norm": 2.7035367488861084, + "grad_norm_var": 0.05619899439359794, + "learning_rate": 0.0001, + "loss": 42.5853, + "loss/crossentropy": 2.8769829273223877, + "loss/hidden": 0.0, + "loss/logits": 0.2273760437965393, + "loss/reg": 39.48089599609375, + "step": 906 + }, + { + "epoch": 0.022675, + "grad_norm": 2.7665393352508545, + "grad_norm_var": 0.05578056314836128, + "learning_rate": 0.0001, + "loss": 42.4535, + "loss/crossentropy": 2.8200128078460693, + "loss/hidden": 0.0, + "loss/logits": 0.2363729327917099, + "loss/reg": 39.39712905883789, + "step": 907 + }, + { + "epoch": 0.0227, + "grad_norm": 2.480107545852661, + "grad_norm_var": 0.05422606208670284, + "learning_rate": 0.0001, + "loss": 42.4059, + "loss/crossentropy": 2.8648123741149902, + "loss/hidden": 0.0, + "loss/logits": 0.22969950735569, + "loss/reg": 39.31142044067383, + "step": 908 + }, + { + "epoch": 0.022725, + "grad_norm": 2.7900424003601074, + "grad_norm_var": 0.05440689578418396, + "learning_rate": 0.0001, + "loss": 42.4378, + "loss/crossentropy": 2.9586613178253174, + "loss/hidden": 0.0, + "loss/logits": 0.25124895572662354, + "loss/reg": 39.2279052734375, + "step": 909 + }, + { + "epoch": 0.02275, + "grad_norm": 2.8045692443847656, + "grad_norm_var": 0.051503902709208425, + "learning_rate": 0.0001, + "loss": 42.0578, + "loss/crossentropy": 2.6795575618743896, + "loss/hidden": 0.0, + "loss/logits": 0.23502734303474426, + "loss/reg": 39.14320373535156, + "step": 910 + }, + { + "epoch": 0.022775, + "grad_norm": 3.0532169342041016, + "grad_norm_var": 0.05717807714263259, + "learning_rate": 0.0001, + "loss": 42.4633, + "loss/crossentropy": 3.152160882949829, + "loss/hidden": 0.0, + "loss/logits": 0.25327080488204956, + "loss/reg": 39.05790710449219, + "step": 911 + }, + { + "epoch": 0.0228, + "grad_norm": 2.6680328845977783, + "grad_norm_var": 0.05705311999868907, + "learning_rate": 0.0001, + "loss": 42.2034, + "loss/crossentropy": 2.99041748046875, + "loss/hidden": 0.0, + "loss/logits": 0.23903341591358185, + "loss/reg": 38.97396469116211, + "step": 912 + }, + { + "epoch": 0.022825, + "grad_norm": 3.3302087783813477, + "grad_norm_var": 0.0693946111033938, + "learning_rate": 0.0001, + "loss": 42.0845, + "loss/crossentropy": 2.930839776992798, + "loss/hidden": 0.0, + "loss/logits": 0.2614016532897949, + "loss/reg": 38.892234802246094, + "step": 913 + }, + { + "epoch": 0.02285, + "grad_norm": 2.6165523529052734, + "grad_norm_var": 0.05272697596004718, + "learning_rate": 0.0001, + "loss": 41.7748, + "loss/crossentropy": 2.7452762126922607, + "loss/hidden": 0.0, + "loss/logits": 0.2193608283996582, + "loss/reg": 38.81016540527344, + "step": 914 + }, + { + "epoch": 0.022875, + "grad_norm": 2.933302402496338, + "grad_norm_var": 0.04752966494528721, + "learning_rate": 0.0001, + "loss": 41.9394, + "loss/crossentropy": 2.9566924571990967, + "loss/hidden": 0.0, + "loss/logits": 0.25487080216407776, + "loss/reg": 38.72779846191406, + "step": 915 + }, + { + "epoch": 0.0229, + "grad_norm": 2.6887619495391846, + "grad_norm_var": 0.043202036673411236, + "learning_rate": 0.0001, + "loss": 41.6663, + "loss/crossentropy": 2.798774242401123, + "loss/hidden": 0.0, + "loss/logits": 0.2221754789352417, + "loss/reg": 38.645347595214844, + "step": 916 + }, + { + "epoch": 0.022925, + "grad_norm": 2.8121073246002197, + "grad_norm_var": 0.04158046028161924, + "learning_rate": 0.0001, + "loss": 41.463, + "loss/crossentropy": 2.6423110961914062, + "loss/hidden": 0.0, + "loss/logits": 0.2565896213054657, + "loss/reg": 38.56413269042969, + "step": 917 + }, + { + "epoch": 0.02295, + "grad_norm": 2.509282350540161, + "grad_norm_var": 0.045107458768999464, + "learning_rate": 0.0001, + "loss": 41.6478, + "loss/crossentropy": 2.930504322052002, + "loss/hidden": 0.0, + "loss/logits": 0.2339283674955368, + "loss/reg": 38.48335647583008, + "step": 918 + }, + { + "epoch": 0.022975, + "grad_norm": 2.6414058208465576, + "grad_norm_var": 0.04450125049984308, + "learning_rate": 0.0001, + "loss": 41.2222, + "loss/crossentropy": 2.609210252761841, + "loss/hidden": 0.0, + "loss/logits": 0.2125830054283142, + "loss/reg": 38.40039825439453, + "step": 919 + }, + { + "epoch": 0.023, + "grad_norm": 2.715888261795044, + "grad_norm_var": 0.0437333648592715, + "learning_rate": 0.0001, + "loss": 41.2045, + "loss/crossentropy": 2.648813009262085, + "loss/hidden": 0.0, + "loss/logits": 0.2370688021183014, + "loss/reg": 38.318572998046875, + "step": 920 + }, + { + "epoch": 0.023025, + "grad_norm": 2.711751937866211, + "grad_norm_var": 0.04289092327507144, + "learning_rate": 0.0001, + "loss": 41.3706, + "loss/crossentropy": 2.885514736175537, + "loss/hidden": 0.0, + "loss/logits": 0.24639633297920227, + "loss/reg": 38.238643646240234, + "step": 921 + }, + { + "epoch": 0.02305, + "grad_norm": 2.6456990242004395, + "grad_norm_var": 0.04356690227298922, + "learning_rate": 0.0001, + "loss": 41.3587, + "loss/crossentropy": 2.941075563430786, + "loss/hidden": 0.0, + "loss/logits": 0.2592896819114685, + "loss/reg": 38.15837478637695, + "step": 922 + }, + { + "epoch": 0.023075, + "grad_norm": 2.8968873023986816, + "grad_norm_var": 0.044734353597355184, + "learning_rate": 0.0001, + "loss": 41.2417, + "loss/crossentropy": 2.9061999320983887, + "loss/hidden": 0.0, + "loss/logits": 0.25584694743156433, + "loss/reg": 38.07965850830078, + "step": 923 + }, + { + "epoch": 0.0231, + "grad_norm": 2.6788389682769775, + "grad_norm_var": 0.039558045732947515, + "learning_rate": 0.0001, + "loss": 40.9876, + "loss/crossentropy": 2.746546506881714, + "loss/hidden": 0.0, + "loss/logits": 0.23900818824768066, + "loss/reg": 38.002079010009766, + "step": 924 + }, + { + "epoch": 0.023125, + "grad_norm": 3.128474712371826, + "grad_norm_var": 0.047123059326641466, + "learning_rate": 0.0001, + "loss": 41.2668, + "loss/crossentropy": 3.087491035461426, + "loss/hidden": 0.0, + "loss/logits": 0.25750723481178284, + "loss/reg": 37.921783447265625, + "step": 925 + }, + { + "epoch": 0.02315, + "grad_norm": 2.8882362842559814, + "grad_norm_var": 0.04758715374512785, + "learning_rate": 0.0001, + "loss": 40.9121, + "loss/crossentropy": 2.817408800125122, + "loss/hidden": 0.0, + "loss/logits": 0.2543855309486389, + "loss/reg": 37.84029006958008, + "step": 926 + }, + { + "epoch": 0.023175, + "grad_norm": 2.8361799716949463, + "grad_norm_var": 0.043418151431792985, + "learning_rate": 0.0001, + "loss": 40.832, + "loss/crossentropy": 2.8375983238220215, + "loss/hidden": 0.0, + "loss/logits": 0.23513871431350708, + "loss/reg": 37.75931167602539, + "step": 927 + }, + { + "epoch": 0.0232, + "grad_norm": 2.909255266189575, + "grad_norm_var": 0.043008241613055276, + "learning_rate": 0.0001, + "loss": 41.1667, + "loss/crossentropy": 3.246528387069702, + "loss/hidden": 0.0, + "loss/logits": 0.24166589975357056, + "loss/reg": 37.67852783203125, + "step": 928 + }, + { + "epoch": 0.023225, + "grad_norm": 2.552696704864502, + "grad_norm_var": 0.026750676712286037, + "learning_rate": 0.0001, + "loss": 40.818, + "loss/crossentropy": 2.9691615104675293, + "loss/hidden": 0.0, + "loss/logits": 0.24937693774700165, + "loss/reg": 37.59941101074219, + "step": 929 + }, + { + "epoch": 0.02325, + "grad_norm": 2.887279748916626, + "grad_norm_var": 0.026141477988341915, + "learning_rate": 0.0001, + "loss": 40.7307, + "loss/crossentropy": 2.956307888031006, + "loss/hidden": 0.0, + "loss/logits": 0.2544440031051636, + "loss/reg": 37.51991653442383, + "step": 930 + }, + { + "epoch": 0.023275, + "grad_norm": 2.615774154663086, + "grad_norm_var": 0.02583631071739016, + "learning_rate": 0.0001, + "loss": 40.504, + "loss/crossentropy": 2.836076259613037, + "loss/hidden": 0.0, + "loss/logits": 0.22688478231430054, + "loss/reg": 37.4410285949707, + "step": 931 + }, + { + "epoch": 0.0233, + "grad_norm": 3.346874475479126, + "grad_norm_var": 0.046882285076200486, + "learning_rate": 0.0001, + "loss": 40.2933, + "loss/crossentropy": 2.698227643966675, + "loss/hidden": 0.0, + "loss/logits": 0.23271670937538147, + "loss/reg": 37.36236572265625, + "step": 932 + }, + { + "epoch": 0.023325, + "grad_norm": 3.105316162109375, + "grad_norm_var": 0.052785925698018585, + "learning_rate": 0.0001, + "loss": 40.2366, + "loss/crossentropy": 2.690444231033325, + "loss/hidden": 0.0, + "loss/logits": 0.2598923146724701, + "loss/reg": 37.28624725341797, + "step": 933 + }, + { + "epoch": 0.02335, + "grad_norm": 2.8327033519744873, + "grad_norm_var": 0.046059668983682654, + "learning_rate": 0.0001, + "loss": 40.4552, + "loss/crossentropy": 3.0131001472473145, + "loss/hidden": 0.0, + "loss/logits": 0.23372459411621094, + "loss/reg": 37.20838165283203, + "step": 934 + }, + { + "epoch": 0.023375, + "grad_norm": 2.720252513885498, + "grad_norm_var": 0.04439112918428994, + "learning_rate": 0.0001, + "loss": 40.1157, + "loss/crossentropy": 2.748929977416992, + "loss/hidden": 0.0, + "loss/logits": 0.23494702577590942, + "loss/reg": 37.13186264038086, + "step": 935 + }, + { + "epoch": 0.0234, + "grad_norm": 2.510647773742676, + "grad_norm_var": 0.05047514191979848, + "learning_rate": 0.0001, + "loss": 39.8904, + "loss/crossentropy": 2.602600336074829, + "loss/hidden": 0.0, + "loss/logits": 0.23265476524829865, + "loss/reg": 37.05512237548828, + "step": 936 + }, + { + "epoch": 0.023425, + "grad_norm": 2.9770853519439697, + "grad_norm_var": 0.05072093631072979, + "learning_rate": 0.0001, + "loss": 40.3788, + "loss/crossentropy": 3.1354868412017822, + "loss/hidden": 0.0, + "loss/logits": 0.2637995779514313, + "loss/reg": 36.97951889038086, + "step": 937 + }, + { + "epoch": 0.02345, + "grad_norm": 2.5489563941955566, + "grad_norm_var": 0.053886506006241085, + "learning_rate": 0.0001, + "loss": 39.9812, + "loss/crossentropy": 2.8318233489990234, + "loss/hidden": 0.0, + "loss/logits": 0.24620817601680756, + "loss/reg": 36.90315246582031, + "step": 938 + }, + { + "epoch": 0.023475, + "grad_norm": 2.9009687900543213, + "grad_norm_var": 0.05391865958705443, + "learning_rate": 0.0001, + "loss": 39.9177, + "loss/crossentropy": 2.8244364261627197, + "loss/hidden": 0.0, + "loss/logits": 0.2657071053981781, + "loss/reg": 36.82755661010742, + "step": 939 + }, + { + "epoch": 0.0235, + "grad_norm": 2.9793155193328857, + "grad_norm_var": 0.05310601324464391, + "learning_rate": 0.0001, + "loss": 40.0234, + "loss/crossentropy": 3.0105204582214355, + "loss/hidden": 0.0, + "loss/logits": 0.2618894875049591, + "loss/reg": 36.750953674316406, + "step": 940 + }, + { + "epoch": 0.023525, + "grad_norm": 2.8539981842041016, + "grad_norm_var": 0.0479435574644467, + "learning_rate": 0.0001, + "loss": 39.8117, + "loss/crossentropy": 2.8921923637390137, + "loss/hidden": 0.0, + "loss/logits": 0.2426648885011673, + "loss/reg": 36.67680358886719, + "step": 941 + }, + { + "epoch": 0.02355, + "grad_norm": 2.6014649868011475, + "grad_norm_var": 0.05130008365882167, + "learning_rate": 0.0001, + "loss": 39.7408, + "loss/crossentropy": 2.896888017654419, + "loss/hidden": 0.0, + "loss/logits": 0.2410784810781479, + "loss/reg": 36.60279083251953, + "step": 942 + }, + { + "epoch": 0.023575, + "grad_norm": 2.8801045417785645, + "grad_norm_var": 0.05149391710301548, + "learning_rate": 0.0001, + "loss": 39.7228, + "loss/crossentropy": 2.9397897720336914, + "loss/hidden": 0.0, + "loss/logits": 0.25510135293006897, + "loss/reg": 36.52793502807617, + "step": 943 + }, + { + "epoch": 0.0236, + "grad_norm": 2.8186585903167725, + "grad_norm_var": 0.05100626896681509, + "learning_rate": 0.0001, + "loss": 39.47, + "loss/crossentropy": 2.75411057472229, + "loss/hidden": 0.0, + "loss/logits": 0.26445087790489197, + "loss/reg": 36.451393127441406, + "step": 944 + }, + { + "epoch": 0.023625, + "grad_norm": 2.9633240699768066, + "grad_norm_var": 0.04686836082955779, + "learning_rate": 0.0001, + "loss": 39.3906, + "loss/crossentropy": 2.7534892559051514, + "loss/hidden": 0.0, + "loss/logits": 0.25982236862182617, + "loss/reg": 36.377254486083984, + "step": 945 + }, + { + "epoch": 0.02365, + "grad_norm": 2.929901123046875, + "grad_norm_var": 0.04721409535759804, + "learning_rate": 0.0001, + "loss": 39.2373, + "loss/crossentropy": 2.6932575702667236, + "loss/hidden": 0.0, + "loss/logits": 0.2382897436618805, + "loss/reg": 36.305755615234375, + "step": 946 + }, + { + "epoch": 0.023675, + "grad_norm": 2.675022602081299, + "grad_norm_var": 0.04559039355538038, + "learning_rate": 0.0001, + "loss": 39.2789, + "loss/crossentropy": 2.8028876781463623, + "loss/hidden": 0.0, + "loss/logits": 0.24303217232227325, + "loss/reg": 36.23302459716797, + "step": 947 + }, + { + "epoch": 0.0237, + "grad_norm": 2.8433735370635986, + "grad_norm_var": 0.0282651774333182, + "learning_rate": 0.0001, + "loss": 39.181, + "loss/crossentropy": 2.774716854095459, + "loss/hidden": 0.0, + "loss/logits": 0.24557200074195862, + "loss/reg": 36.16071319580078, + "step": 948 + }, + { + "epoch": 0.023725, + "grad_norm": 2.809319257736206, + "grad_norm_var": 0.022532732866163013, + "learning_rate": 0.0001, + "loss": 39.33, + "loss/crossentropy": 3.011596918106079, + "loss/hidden": 0.0, + "loss/logits": 0.228348970413208, + "loss/reg": 36.09001159667969, + "step": 949 + }, + { + "epoch": 0.02375, + "grad_norm": 2.9273681640625, + "grad_norm_var": 0.023470027420536846, + "learning_rate": 0.0001, + "loss": 38.9413, + "loss/crossentropy": 2.6855454444885254, + "loss/hidden": 0.0, + "loss/logits": 0.23887701332569122, + "loss/reg": 36.01683044433594, + "step": 950 + }, + { + "epoch": 0.023775, + "grad_norm": 3.389801263809204, + "grad_norm_var": 0.043589378411585736, + "learning_rate": 0.0001, + "loss": 39.4398, + "loss/crossentropy": 3.211602210998535, + "loss/hidden": 0.0, + "loss/logits": 0.283491313457489, + "loss/reg": 35.944705963134766, + "step": 951 + }, + { + "epoch": 0.0238, + "grad_norm": 2.8046481609344482, + "grad_norm_var": 0.03566620795445464, + "learning_rate": 0.0001, + "loss": 38.8264, + "loss/crossentropy": 2.689462661743164, + "loss/hidden": 0.0, + "loss/logits": 0.2632759213447571, + "loss/reg": 35.87367248535156, + "step": 952 + }, + { + "epoch": 0.023825, + "grad_norm": 2.9345734119415283, + "grad_norm_var": 0.03516626203340228, + "learning_rate": 0.0001, + "loss": 39.0027, + "loss/crossentropy": 2.9450294971466064, + "loss/hidden": 0.0, + "loss/logits": 0.2565668821334839, + "loss/reg": 35.8011474609375, + "step": 953 + }, + { + "epoch": 0.02385, + "grad_norm": 2.4629881381988525, + "grad_norm_var": 0.03926570002250382, + "learning_rate": 0.0001, + "loss": 38.6895, + "loss/crossentropy": 2.7172951698303223, + "loss/hidden": 0.0, + "loss/logits": 0.24316415190696716, + "loss/reg": 35.72907257080078, + "step": 954 + }, + { + "epoch": 0.023875, + "grad_norm": 3.0658795833587646, + "grad_norm_var": 0.041845868526290055, + "learning_rate": 0.0001, + "loss": 38.8817, + "loss/crossentropy": 2.9409422874450684, + "loss/hidden": 0.0, + "loss/logits": 0.2831678092479706, + "loss/reg": 35.65754699707031, + "step": 955 + }, + { + "epoch": 0.0239, + "grad_norm": 2.8264553546905518, + "grad_norm_var": 0.04110340640186886, + "learning_rate": 0.0001, + "loss": 38.6798, + "loss/crossentropy": 2.841045618057251, + "loss/hidden": 0.0, + "loss/logits": 0.25310787558555603, + "loss/reg": 35.58567428588867, + "step": 956 + }, + { + "epoch": 0.023925, + "grad_norm": 2.8380401134490967, + "grad_norm_var": 0.041135667710252004, + "learning_rate": 0.0001, + "loss": 38.459, + "loss/crossentropy": 2.6821844577789307, + "loss/hidden": 0.0, + "loss/logits": 0.2615047097206116, + "loss/reg": 35.515350341796875, + "step": 957 + }, + { + "epoch": 0.02395, + "grad_norm": 3.5808513164520264, + "grad_norm_var": 0.06723561445601618, + "learning_rate": 0.0001, + "loss": 38.8643, + "loss/crossentropy": 3.114391803741455, + "loss/hidden": 0.0, + "loss/logits": 0.30714309215545654, + "loss/reg": 35.44272994995117, + "step": 958 + }, + { + "epoch": 0.023975, + "grad_norm": 2.6595239639282227, + "grad_norm_var": 0.07150567007109672, + "learning_rate": 0.0001, + "loss": 38.0653, + "loss/crossentropy": 2.4589178562164307, + "loss/hidden": 0.0, + "loss/logits": 0.23348893225193024, + "loss/reg": 35.37288284301758, + "step": 959 + }, + { + "epoch": 0.024, + "grad_norm": 2.541332483291626, + "grad_norm_var": 0.07962008638647618, + "learning_rate": 0.0001, + "loss": 38.2545, + "loss/crossentropy": 2.7399823665618896, + "loss/hidden": 0.0, + "loss/logits": 0.2123335599899292, + "loss/reg": 35.30220413208008, + "step": 960 + }, + { + "epoch": 0.024025, + "grad_norm": 3.438565254211426, + "grad_norm_var": 0.09833307021827574, + "learning_rate": 0.0001, + "loss": 38.371, + "loss/crossentropy": 2.8811817169189453, + "loss/hidden": 0.0, + "loss/logits": 0.25691962242126465, + "loss/reg": 35.232913970947266, + "step": 961 + }, + { + "epoch": 0.02405, + "grad_norm": 2.7037241458892822, + "grad_norm_var": 0.10124614126430061, + "learning_rate": 0.0001, + "loss": 38.2645, + "loss/crossentropy": 2.8557090759277344, + "loss/hidden": 0.0, + "loss/logits": 0.24377232789993286, + "loss/reg": 35.1650505065918, + "step": 962 + }, + { + "epoch": 0.024075, + "grad_norm": 2.69218111038208, + "grad_norm_var": 0.10073533014069654, + "learning_rate": 0.0001, + "loss": 38.0522, + "loss/crossentropy": 2.7217583656311035, + "loss/hidden": 0.0, + "loss/logits": 0.2358003854751587, + "loss/reg": 35.09463882446289, + "step": 963 + }, + { + "epoch": 0.0241, + "grad_norm": 3.008634090423584, + "grad_norm_var": 0.10103115408336763, + "learning_rate": 0.0001, + "loss": 38.3344, + "loss/crossentropy": 3.036750316619873, + "loss/hidden": 0.0, + "loss/logits": 0.2726588249206543, + "loss/reg": 35.02499771118164, + "step": 964 + }, + { + "epoch": 0.024125, + "grad_norm": 2.662174940109253, + "grad_norm_var": 0.10451155871548182, + "learning_rate": 0.0001, + "loss": 38.3726, + "loss/crossentropy": 3.1680073738098145, + "loss/hidden": 0.0, + "loss/logits": 0.24728718400001526, + "loss/reg": 34.95726013183594, + "step": 965 + }, + { + "epoch": 0.02415, + "grad_norm": 2.8360965251922607, + "grad_norm_var": 0.10480316259746587, + "learning_rate": 0.0001, + "loss": 37.8496, + "loss/crossentropy": 2.714099884033203, + "loss/hidden": 0.0, + "loss/logits": 0.2466110736131668, + "loss/reg": 34.888893127441406, + "step": 966 + }, + { + "epoch": 0.024175, + "grad_norm": 2.738298177719116, + "grad_norm_var": 0.08903093948484392, + "learning_rate": 0.0001, + "loss": 38.2404, + "loss/crossentropy": 3.152971029281616, + "loss/hidden": 0.0, + "loss/logits": 0.268291711807251, + "loss/reg": 34.819091796875, + "step": 967 + }, + { + "epoch": 0.0242, + "grad_norm": 2.773857831954956, + "grad_norm_var": 0.08932614783542002, + "learning_rate": 0.0001, + "loss": 38.0543, + "loss/crossentropy": 3.0643906593322754, + "loss/hidden": 0.0, + "loss/logits": 0.2395814061164856, + "loss/reg": 34.7503547668457, + "step": 968 + }, + { + "epoch": 0.024225, + "grad_norm": 2.555189609527588, + "grad_norm_var": 0.09455968532326603, + "learning_rate": 0.0001, + "loss": 37.7541, + "loss/crossentropy": 2.834400177001953, + "loss/hidden": 0.0, + "loss/logits": 0.23769161105155945, + "loss/reg": 34.68204879760742, + "step": 969 + }, + { + "epoch": 0.02425, + "grad_norm": 3.086888551712036, + "grad_norm_var": 0.08781776896609182, + "learning_rate": 0.0001, + "loss": 37.8627, + "loss/crossentropy": 2.9810502529144287, + "loss/hidden": 0.0, + "loss/logits": 0.26743876934051514, + "loss/reg": 34.61421585083008, + "step": 970 + }, + { + "epoch": 0.024275, + "grad_norm": 4.088360786437988, + "grad_norm_var": 0.17911672859183908, + "learning_rate": 0.0001, + "loss": 37.7253, + "loss/crossentropy": 2.8682823181152344, + "loss/hidden": 0.0, + "loss/logits": 0.30868783593177795, + "loss/reg": 34.54836654663086, + "step": 971 + }, + { + "epoch": 0.0243, + "grad_norm": 3.1919515132904053, + "grad_norm_var": 0.1819625200877444, + "learning_rate": 0.0001, + "loss": 37.4812, + "loss/crossentropy": 2.7390143871307373, + "loss/hidden": 0.0, + "loss/logits": 0.26100480556488037, + "loss/reg": 34.481136322021484, + "step": 972 + }, + { + "epoch": 0.024325, + "grad_norm": 2.575105667114258, + "grad_norm_var": 0.19063724665019186, + "learning_rate": 0.0001, + "loss": 37.4356, + "loss/crossentropy": 2.8003249168395996, + "loss/hidden": 0.0, + "loss/logits": 0.2204829901456833, + "loss/reg": 34.41484069824219, + "step": 973 + }, + { + "epoch": 0.02435, + "grad_norm": 2.9630026817321777, + "grad_norm_var": 0.16218006358210366, + "learning_rate": 0.0001, + "loss": 37.519, + "loss/crossentropy": 2.894831657409668, + "loss/hidden": 0.0, + "loss/logits": 0.2747398912906647, + "loss/reg": 34.34943771362305, + "step": 974 + }, + { + "epoch": 0.024375, + "grad_norm": 2.6025750637054443, + "grad_norm_var": 0.16426326415777884, + "learning_rate": 0.0001, + "loss": 37.0734, + "loss/crossentropy": 2.554583787918091, + "loss/hidden": 0.0, + "loss/logits": 0.23361030220985413, + "loss/reg": 34.28517532348633, + "step": 975 + }, + { + "epoch": 0.0244, + "grad_norm": 2.6642050743103027, + "grad_norm_var": 0.15927148910242578, + "learning_rate": 0.0001, + "loss": 37.4822, + "loss/crossentropy": 3.0164380073547363, + "loss/hidden": 0.0, + "loss/logits": 0.24384766817092896, + "loss/reg": 34.22189712524414, + "step": 976 + }, + { + "epoch": 0.024425, + "grad_norm": 3.38037371635437, + "grad_norm_var": 0.15539215192371383, + "learning_rate": 0.0001, + "loss": 37.2464, + "loss/crossentropy": 2.8206450939178467, + "loss/hidden": 0.0, + "loss/logits": 0.2702368497848511, + "loss/reg": 34.155494689941406, + "step": 977 + }, + { + "epoch": 0.02445, + "grad_norm": 4.222375392913818, + "grad_norm_var": 0.2582409245142865, + "learning_rate": 0.0001, + "loss": 37.0559, + "loss/crossentropy": 2.7178001403808594, + "loss/hidden": 0.0, + "loss/logits": 0.24727877974510193, + "loss/reg": 34.0908317565918, + "step": 978 + }, + { + "epoch": 0.024475, + "grad_norm": 2.7761597633361816, + "grad_norm_var": 0.2552061228003131, + "learning_rate": 0.0001, + "loss": 37.1297, + "loss/crossentropy": 2.860049247741699, + "loss/hidden": 0.0, + "loss/logits": 0.24505718052387238, + "loss/reg": 34.02457046508789, + "step": 979 + }, + { + "epoch": 0.0245, + "grad_norm": 3.6322226524353027, + "grad_norm_var": 0.2795770565181319, + "learning_rate": 0.0001, + "loss": 36.8498, + "loss/crossentropy": 2.6204307079315186, + "loss/hidden": 0.0, + "loss/logits": 0.2698652446269989, + "loss/reg": 33.95948791503906, + "step": 980 + }, + { + "epoch": 0.024525, + "grad_norm": 2.981858491897583, + "grad_norm_var": 0.2695698630538421, + "learning_rate": 0.0001, + "loss": 36.9264, + "loss/crossentropy": 2.737006187438965, + "loss/hidden": 0.0, + "loss/logits": 0.29314208030700684, + "loss/reg": 33.89624786376953, + "step": 981 + }, + { + "epoch": 0.02455, + "grad_norm": 2.74503755569458, + "grad_norm_var": 0.2728889013063165, + "learning_rate": 0.0001, + "loss": 36.943, + "loss/crossentropy": 2.8646838665008545, + "loss/hidden": 0.0, + "loss/logits": 0.24609914422035217, + "loss/reg": 33.8322639465332, + "step": 982 + }, + { + "epoch": 0.024575, + "grad_norm": 3.004685640335083, + "grad_norm_var": 0.26585896787462554, + "learning_rate": 0.0001, + "loss": 36.8484, + "loss/crossentropy": 2.8109850883483887, + "loss/hidden": 0.0, + "loss/logits": 0.27065545320510864, + "loss/reg": 33.76673889160156, + "step": 983 + }, + { + "epoch": 0.0246, + "grad_norm": 2.5903549194335938, + "grad_norm_var": 0.2753986673068833, + "learning_rate": 0.0001, + "loss": 36.6906, + "loss/crossentropy": 2.7470083236694336, + "loss/hidden": 0.0, + "loss/logits": 0.23907317221164703, + "loss/reg": 33.70456314086914, + "step": 984 + }, + { + "epoch": 0.024625, + "grad_norm": 3.030545234680176, + "grad_norm_var": 0.2571285872129806, + "learning_rate": 0.0001, + "loss": 36.79, + "loss/crossentropy": 2.900418996810913, + "loss/hidden": 0.0, + "loss/logits": 0.24839098751544952, + "loss/reg": 33.64120101928711, + "step": 985 + }, + { + "epoch": 0.02465, + "grad_norm": 4.879204750061035, + "grad_norm_var": 0.45573044942737867, + "learning_rate": 0.0001, + "loss": 36.6408, + "loss/crossentropy": 2.826655626296997, + "loss/hidden": 0.0, + "loss/logits": 0.2366310954093933, + "loss/reg": 33.57756042480469, + "step": 986 + }, + { + "epoch": 0.024675, + "grad_norm": 2.7205452919006348, + "grad_norm_var": 0.4121069666646612, + "learning_rate": 0.0001, + "loss": 36.6661, + "loss/crossentropy": 2.88576078414917, + "loss/hidden": 0.0, + "loss/logits": 0.2657344341278076, + "loss/reg": 33.51458740234375, + "step": 987 + }, + { + "epoch": 0.0247, + "grad_norm": 2.815150737762451, + "grad_norm_var": 0.4174920306889968, + "learning_rate": 0.0001, + "loss": 36.4976, + "loss/crossentropy": 2.8254778385162354, + "loss/hidden": 0.0, + "loss/logits": 0.22087544202804565, + "loss/reg": 33.45124435424805, + "step": 988 + }, + { + "epoch": 0.024725, + "grad_norm": 2.422433614730835, + "grad_norm_var": 0.4296126043076429, + "learning_rate": 0.0001, + "loss": 36.3345, + "loss/crossentropy": 2.748582124710083, + "loss/hidden": 0.0, + "loss/logits": 0.19592465460300446, + "loss/reg": 33.390045166015625, + "step": 989 + }, + { + "epoch": 0.02475, + "grad_norm": 3.05722713470459, + "grad_norm_var": 0.42857927278229774, + "learning_rate": 0.0001, + "loss": 36.6306, + "loss/crossentropy": 3.035149574279785, + "loss/hidden": 0.0, + "loss/logits": 0.2665707468986511, + "loss/reg": 33.32892990112305, + "step": 990 + }, + { + "epoch": 0.024775, + "grad_norm": 2.711097240447998, + "grad_norm_var": 0.42218565465504604, + "learning_rate": 0.0001, + "loss": 36.1321, + "loss/crossentropy": 2.623349189758301, + "loss/hidden": 0.0, + "loss/logits": 0.23991812765598297, + "loss/reg": 33.26885986328125, + "step": 991 + }, + { + "epoch": 0.0248, + "grad_norm": 2.7607216835021973, + "grad_norm_var": 0.4171327516174946, + "learning_rate": 0.0001, + "loss": 36.2218, + "loss/crossentropy": 2.785637140274048, + "loss/hidden": 0.0, + "loss/logits": 0.22857247292995453, + "loss/reg": 33.20759201049805, + "step": 992 + }, + { + "epoch": 0.024825, + "grad_norm": 2.80138897895813, + "grad_norm_var": 0.4170671328116583, + "learning_rate": 0.0001, + "loss": 36.5573, + "loss/crossentropy": 3.1539735794067383, + "loss/hidden": 0.0, + "loss/logits": 0.2574368119239807, + "loss/reg": 33.14588165283203, + "step": 993 + }, + { + "epoch": 0.02485, + "grad_norm": 2.9705312252044678, + "grad_norm_var": 0.3229893124537945, + "learning_rate": 0.0001, + "loss": 36.1044, + "loss/crossentropy": 2.742678165435791, + "loss/hidden": 0.0, + "loss/logits": 0.27794939279556274, + "loss/reg": 33.08378219604492, + "step": 994 + }, + { + "epoch": 0.024875, + "grad_norm": 3.338322401046753, + "grad_norm_var": 0.3264354213345731, + "learning_rate": 0.0001, + "loss": 36.47, + "loss/crossentropy": 3.1671180725097656, + "loss/hidden": 0.0, + "loss/logits": 0.2787696421146393, + "loss/reg": 33.024147033691406, + "step": 995 + }, + { + "epoch": 0.0249, + "grad_norm": 2.7873196601867676, + "grad_norm_var": 0.3030776384523582, + "learning_rate": 0.0001, + "loss": 36.0396, + "loss/crossentropy": 2.798398733139038, + "loss/hidden": 0.0, + "loss/logits": 0.2761346995830536, + "loss/reg": 32.96507263183594, + "step": 996 + }, + { + "epoch": 0.024925, + "grad_norm": 2.831047534942627, + "grad_norm_var": 0.3043818652657305, + "learning_rate": 0.0001, + "loss": 35.9753, + "loss/crossentropy": 2.8229103088378906, + "loss/hidden": 0.0, + "loss/logits": 0.2463880479335785, + "loss/reg": 32.90603256225586, + "step": 997 + }, + { + "epoch": 0.02495, + "grad_norm": 2.631510019302368, + "grad_norm_var": 0.3085412012750756, + "learning_rate": 0.0001, + "loss": 35.9105, + "loss/crossentropy": 2.8491134643554688, + "loss/hidden": 0.0, + "loss/logits": 0.21344730257987976, + "loss/reg": 32.84790802001953, + "step": 998 + }, + { + "epoch": 0.024975, + "grad_norm": 2.7426092624664307, + "grad_norm_var": 0.311255195789613, + "learning_rate": 0.0001, + "loss": 35.8303, + "loss/crossentropy": 2.779572010040283, + "loss/hidden": 0.0, + "loss/logits": 0.2633829116821289, + "loss/reg": 32.78731155395508, + "step": 999 + }, + { + "epoch": 0.025, + "grad_norm": 2.9469587802886963, + "grad_norm_var": 0.30242983856450084, + "learning_rate": 0.0001, + "loss": 36.044, + "loss/crossentropy": 3.054746150970459, + "loss/hidden": 0.0, + "loss/logits": 0.25968533754348755, + "loss/reg": 32.72958755493164, + "step": 1000 + } + ], + "logging_steps": 1, + "max_steps": 40000, + "num_input_tokens_seen": 0, + "num_train_epochs": 9223372036854775807, + "save_steps": 1000, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": true, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 6.455688167424e+16, + "train_batch_size": 4, + "trial_name": null, + "trial_params": null +}